
行业大模型 · 数据全流程指南
文章平均质量分 96
这是一套系统讲解大模型预训练数据设计、采集、清洗与合规治理的实战专栏,聚焦行业场景,从需求定义到数据闭环,带你构建专属于你的智能数据基座。
涵盖数据战略、采集技巧、开源资源、合规规范、清洗增强与落地实战,助力你从“拿来用模型”迈向“打造属于自己的模型”。
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
6大开源生成式 AI 安全测试工具横评:能力对比 × 实战复现 × 场景选型路线图
生成式 AI 在快速落地,但“安全风险”正悄悄成为部署拦路虎:你知道模型是否会越权?是否会编造?是否会被 prompt 注入控制?本篇系统对比 6 大主流开源 LLM 安全评估工具(含 Evals、AdvBench、Gauntlet、LLM Guard 等),从部署方式、中文支持、攻击样本、评分机制等多个维度进行横评,附实战复现步骤与场景选型建议,帮助开发者与企业构建“能上线、可监控、可治理”的模型安全基线。原创 2025-04-08 19:24:11 · 909 阅读 · 4 评论 -
打造高质量行业语料的混合构建方案:开源 × 私有 × 合成的策略融合
数据源优点缺点最佳用法开源语料快速获取,任务标准贴合度低冷启动、格式参考、训练测试私有数据真实业务,最懂你敏感、结构乱精调主力、用户模拟、智能体语料合成数据灵活可控,批量生成幻觉风险、需二次校验多样性扩展、少样本增强能力名称能干什么样本池管理分类存储、搜索、权限控制、标签标注数据质量监控自动统计结构完整性、冗余率、打分趋势数据版本管理每一轮训练用哪些数据源、用的哪一版?可视化筛选低分样本、冗余样本、高质量样本一键过滤输出一键打包导出。原创 2025-04-03 10:00:00 · 655 阅读 · 0 评论 -
合成数据是出路吗?基于 LLM 生成数据的注意事项与实战技巧
示例任务构造方式文本摘要Prompt:将以下段落总结为一句话风格转换Prompt:将正式表达改为通俗口语(或反之)长文本提要Prompt:给多段内容写出三要点✅ 非常适合增强模型语言压缩、结构理解能力⚠️ 注意评估生成内容的信息丢失或增加合成完成↓格式校验(结构完整 / 关键词筛查)↓GPT审查打分(准确性 × 风格 × 一致性)↓Embedding去重 / 相似样本聚类↓训练前手工抽样20条人工验证↓入库 + 版本标记 + 权重可控方法推荐数量级推荐用途。原创 2025-04-03 00:08:48 · 697 阅读 · 0 评论 -
构建你的私有行业知识库:企业内部数据采集实战
很多人以为“训大模型”就是“找点数据喂进去”, 但真正在行业场景里“训出效果”的,靠的不是 Common Crawl,也不是 GitHub 语料,而是:> ✅ 你们公司那几年的 FAQ > ✅ 客服系统里的工单日志 > ✅ 那些藏在 Notion、企业网盘、飞书文档里的产品手册 > ✅ 那些销售、法务、客服写过 N 遍的“标准回答模版”原创 2025-04-02 21:07:25 · 882 阅读 · 0 评论 -
构建你的开源语料库:行业模型的启动弹药从哪来?
下载数据集↓格式统一:input/output/instruction↓补 instruction、清洗脏样本↓导出 jsonl 或 csv 格式↓送入微调流程(如 QLoRA / SFT)很多团队会说:“我们也用了开源语料,为什么模型训完效果这么拉?因为你可能别等数据全都准备好才开始训,你应该先训一个“初步能答”的模型,试错、调方向、滚雪球。大模型项目从来不是“一口气做完”,而是一个“训一个版本 → 上一个试点 → 拿到反馈 → 喂回新数据”的闭环。原创 2025-04-02 16:00:00 · 574 阅读 · 0 评论 -
如何在公共平台合法采集你要的数据?
🧱 大模型的未来属于有数据资产治理能力的人,不是调得动 API 的人。你可以用模型,但你能不能用得合法、用得安心、用得长久,才是壁垒。原创 2025-04-02 00:07:37 · 1545 阅读 · 0 评论 -
如何定义你需要的数据?别再瞎堆文本了
我们先爬点知乎、搜点公众号文章。“把历史聊天记录打包丢进去,先训一轮看看。然后训出来的效果是:“模型说得倒挺流畅,但和业务一点都不沾边。“它看起来很懂,实际上是在胡说八道。你到底要教它什么,它要怎么学会,你又准备怎么教。你得先告诉模型:“你要干什么?一个客服助理?一个医疗摘要工具?一个智能文档审核机器人?一个保险理赔判断官?要聚焦在“一个具体任务”上,而不是“啥都行”。项目内容说明任务目标将原始病例转为标准格式摘要输入原始病历文本(主诉、体征、化验等)输出。原创 2025-04-01 22:36:44 · 634 阅读 · 0 评论 -
真正的竞争壁垒:不是你能用模型,而是你能训出自己的模型
另一家合作医院遇到的问题是:医生写病历摘要太慢。他们一开始想拿 GPT 帮忙写,但发现:GPT 不知道怎么挑重点,也不理解医学缩写,更不知道医保用药规则,生成结果像AI流水账。后面怎么办?把真实病例文本、诊断建议、医生标注过的摘要,拿出来做结构标注;把摘要拆成“主诉 / 检查 /诊断 / 医嘱”几个模板;用这些标准样本训了一个轻量模型 + 检索补全模块。结果:✅ 原来写一份摘要 7 分钟,✅ 现在医生“选改”只用 1 分钟。而且摘要内容更规范,还自动建议医保合规关键词,医生们都乐了。原创 2025-04-01 16:40:25 · 498 阅读 · 0 评论 -
行业模型价值从何而来:为什么数据比模型更关键?
各种“能写、能说、能编程”的 AI 一路狂飙,让人看得热血沸腾。这就像你让 GPT 来回答“我们公司 2021 年的退保流程是什么”,它回答得再流畅也答不上来。所以,GPT 牛是牛,但它从没吃过你公司、你医院、你法院、你客户的那套东西。“我没吃过你家的调料,没看过你妈的配方,也不知道你家人喜欢咸的还是甜的。说白了,你指望它像专家,结果它就是个嘴上功夫特别好的“外行”。这些模型,不一定参数多,但因为“吃的对”,就比通用模型靠谱。它答不上,是它见识少。但你要它做“你妈做的那道红烧肉”,它就懵了。原创 2025-04-01 10:30:24 · 282 阅读 · 0 评论