个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。
多模型多 Agent 混合部署系统设计:智能体任务分流 × 路由调度 × 动态模型调用机制实战
🧠 摘要
一个现实问题是:你不会永远只部署一个模型,也不会只有一个智能体。现实中你可能有:
- 大模型 A:强推理、高成本,用于核心判断类任务
- 小模型 B:低延迟、成本低,用于工具调用、内容加工
- 图像模型、搜索 Agent、对话 Agent、多语言 Agent……
那如何构建一个支持多模型自动分流、Agent 智能调度、异构引擎共存的系统架构?
本篇将完整解析智能体系统在“部署实战”阶段的系统设计策略,包括路由调度、模型选择策略、多模型配置方式、推理引擎适配方案、服务集成方案与成本控制点设计,并结合实际工程代码示例,帮你从“能跑”走向“能上线”的 Agent 系统。
📚 目录
一、为什么需要多模型协同系统?Agent 系统从功能闭环到部署闭环的演化逻辑
- 单模型系统的瓶颈:性能 × 成本 × 兼容性
- 多模型协同是系统演化的“水到渠成”
二、多 Agent × 多模型典型协同模式与适配策略
- 一 Agent 多模型(能力切分型)
- 多 Agent 多模型(职责划分型)
- 多模型 One Task(融合调优型)
三、模型调度系统的核心结构设计:路由器 × 模型池 × 策略中心
- 路由器负责接收任务并识别类型
- 模型池抽象后端能力:本地 / OpenAI / API / 自部署
- 策略中心动态决策:任务级 × Agent级 × 分数级分配逻辑
四、智能调度策略实战:如何按任务粒度选最优模型?
- 静态映射 vs 动态调度
- 成本感知 × 响应时间 × 任务紧急度 × 成功概率 × 任务偏好
五、构建多模型推理网关:FastAPI × OpenRouter × Triton × 自定义策略集成方法
- 多模型注册 / 心跳管理 / 路由 API 设计
- 动态注册与负载控制机制
- 各模型接口参数差异兼容处理方案
六、总结:Agent 不只是前端智能体,背后是整个推理服务基础设施
一、为什么需要多模型协同系统?
Agent 系统从功能闭环到部署闭环的演化逻辑
很多人做 Agent 系统,最开始的状态是:
“我们先接一个模型试试看。”
于是你接入了一个大语言模型:Qwen、DeepSeek、GPT-4、Claude 或者本地的 LLaMA2。接着你构建了智能体:能理解、能执行、能反馈,跑起来没问题。
但用了不到一周,你会发现几个大问题:
❌ 问题一:单模型负载瓶颈
- 一旦调用并发多,QPS 顶不住,Agent 响应变慢
- 有些任务明明只是拼模板,结果非得跑一遍 GPT-4
❌ 问题二:模型成本不可控
- 核心任务调用 GPT-4 是刚需
- 但副任务也全用它,直接炸成本:月账单超10万
❌ 问题三:不同任务对模型能力需求不同
任务类型 | 实际需求 | 理想模型配置 |
---|---|---|
工具调用构造 | 准确生成 JSON | Qwen / Mistral 足够 |
内容审核 | 高鲁棒性 + 安全判断 | Claude / GPT-4 |
多语言转写任务 | 快速、低成本 | 小模型 / 本地模型 |
长文规划 | 长上下文能力强 | GPT-4 Turbo / DeepSeek-VL |
所以你会发现:
你不可能用“一把梭”的方式解决所有智能体任务,Agent 系统必然走向“多模型协同”结构。
✅ 多模型系统的本质目标:
目标 | 解释 |
---|---|
性能稳定 | 高频任务用小模型兜底,核心任务留给强模型 |
成本可控 | 每类任务分配最合理资源,不烧冤枉钱 |
能力最大化 | 不同任务自动选最擅长模型(非固定绑定) |
容灾可替换 | 某模型挂了可自动 fallback 到替代模型 |
多 Agent 多技能 | 每个智能体用“自己的最优模型”,不统一绑死 |
二、多 Agent × 多模型典型协同模式与适配策略
我们现在已经知道:要上多模型,那该怎么和多个 Agent 配合?怎么分工协作?
这里有三种典型模式,每种适配不同系统设计思路。
🧩 模式一:一 Agent 多模型(能力切分型)
同一个智能体,在不同任务上下文中调用不同模型。
📌 应用场景:
一个 ContentAgent,在写内容用 DeepSeek;做 JSON 校验用 MiniLM;情绪分析用 GPT-4。
📌 关键:Agent 内部维护一个模型选择器(Model Selector)
class ContentAgent:
def select_model(self, task_type):
if task_type == "content": return "deepseek-chat"
if task_type == "validate": return "qwen1.5"
return "gpt-4"
def receive(self, input):
model = self.select_model(input["subtask"])
return call_model(model, input)
🧠 模式二:多 Agent 多模型(职责划分型)
不同角色 Agent 配备不同模型,各自只处理自己的职责领域。
Agent 角色 | 专属任务 | 推荐模型 |
---|---|---|
InterpreterAgent | 理解用户意图 | GPT-4 / Claude |
PlannerAgent | 拆任务 / 定路径 | Qwen / DeepSeek |
ExecutorAgent | 调工具 / 格式生成 | Qwen / 小模型 |
CriticAgent | 审核反馈 / 给分数 | GPT-4 / Claude 3 Opus |
📌 实现方式:Agent 接入模型配置字典
ROLE_MODEL_MAP = {
"Interpreter": "gpt-4",
"Planner": "deepseek-chat",
"Executor": "qwen1.5",
"Critic": "claude-3"
}
🔗 模式三:多模型 One Task(融合调优型)
一个复杂任务由多个模型协同完成,产生最终答案。
📌 示例:给用户生成一个带图表、结构化文本和语音播报的报告。
- 文本理解 → GPT-4
- 图表构造 → DeepSeek-VL
- TTS 配音文案生成 → Mistral
- 最后输出由“融合器”整合模型输出
📌 实现建议:
- 构建统一接口:
multi_model_orchestrator(inputs) → final_output
- 每个模型有自己的子任务 → 输出结构规范
- 支持模型输出失败时 fallback 或兜底策略(Retry × 替代模型)
三、模型调度系统的核心结构设计:
路由器 × 模型池 × 策略中心
一个完整的多模型智能调度系统,必须解决以下几个核心问题:
问题 | 解法模块 |
---|---|
哪个模型处理哪个任务? | 策略中心 |
模型调用地址在哪?参数格式怎么转? | 模型池 |
用户请求来了,怎么识别任务并分配? | 路由器 |
📌 所以我们推荐如下系统结构:
🧱 多模型调度系统三大核心组件:
+---------------------+
| Task Router | ← 用户任务请求
+----------+----------+
|
v
+----------+----------+
| Strategy Center | ← 决定用哪个模型
+----------+----------+
|
v
+----------+----------+
| Model Pool | ← 真正调模型,统一接口封装
+---------------------+
✅ 1. Task Router(任务路由器)
负责接收 Agent 或用户请求,提取任务特征,转发给策略中心。
核心职责:
- 识别任务类型(文本生成 / 结构化 JSON / 工具调用 / 多模态)
- 识别 Agent 角色(Executor?Planner?Critic?)
- 识别任务紧急程度 / token 长度 / response SLA 要求
代码示例(FastAPI):
@app.post("/agent/request")
def route_request(task: TaskRequest):
task_meta = extract_task_meta(task)
route_key = make_route_key(task_meta)
model_name = strategy_center.select_model(route_key)
return model_pool.call(model_name, task)
✅ 2. Strategy Center(调度策略中心)
系统的“大脑”,负责决定:
当前任务 → 用哪个模型、哪个版本、哪个 endpoint?
策略设计方式:
类型 | 说明 |
---|---|
静态策略 | 固定规则匹配(任务类型 → 模型) |
动态策略 | 根据实时 QPS、成本、SLA、历史反馈动态选择 |
用户偏好策略 | 某用户绑定某类模型(如 admin 默认 GPT-4) |
Fallback 策略 | 主模型失败自动降级备用模型 |
静态示例:
ROUTE_POLICY = {
"planner.short": "deepseek-chat",
"planner.long": "gpt-4",
"executor.json": "qwen1.5",
"critic.default": "claude-3"
}
动态策略(伪代码):
def select_model(route_key):
candidates = ROUTE_POLICY[route_key]
for model in candidates:
if model_health[model]["qps"] < threshold and model_health[model]["alive"]:
return model
return fallback_model
✅ 3. Model Pool(模型调用池)
系统的“手脚”,统一封装所有模型调用逻辑。
每个模型用 Adapter 封装:
class GPT4Adapter:
def call(self, prompt, **kwargs):
return openai.ChatCompletion.create(...)
class DeepSeekAdapter:
def call(self, prompt, **kwargs):
return requests.post("http://api.deepseek...", ...)
class QwenAdapter:
def call(self, prompt, **kwargs):
return local_qwen_infer(prompt)
统一模型调用接口:
class ModelPool:
def __init__(self):
self.models = {
"gpt-4": GPT4Adapter(),
"deepseek-chat": DeepSeekAdapter(),
"qwen1.5": QwenAdapter()
}
def call(self, model_name, task):
return self.models[model_name].call(task.prompt, **task.meta)
📌 好处:
- 隔离模型细节,支持热插拔
- 支持多端后端混布(本地 / OpenAI / 第三方 API)
- 可扩展至多模态模型、工具链调用
四、智能调度策略实战:
如何按任务粒度选最优模型?
很多系统部署后会遇到:
明明设置了模型映射规则,结果用起来总是“不智能”:
- 明明只是个小任务,结果调了 GPT-4
- 模型挂掉了,系统却一直 Retry 失败
- 用户有偏好,却始终用默认模型
问题核心是:调度策略写得太死,没有考虑业务权重与成本感知。
✅ 构建智能模型调度策略,推荐考虑以下指标:
维度 | 含义 | 示例 |
---|---|---|
任务类型匹配 | 是 Planner?还是 ToolCall? | 用不同模型擅长领域 |
内容长度 / token 预算 | 长上下文任务给大模型 | 超过 2k token 默认 gpt-4-turbo |
用户等级 / SLA | 高级用户用强模型 | admin → Claude 3, 普通 → Qwen |
成功概率预测 | 模型历史表现 | 用评分模型预测成功率 |
成本控制 | 预算限制 | 用便宜模型先试,再 fallback |
🧠 实现建议:多策略加权决策函数
def compute_model_score(model_name, task_meta):
score = 0
if task_meta["length"] > 2000:
score += model_rank[model_name]["long_ctx"]
if task_meta["task_type"] == "planner":
score += model_rank[model_name]["planning"]
if model_cost[model_name] < task_meta["budget"]:
score += 1
if not model_health[model_name]["alive"]:
score -= 100
return score
✅ Fallback 机制必须设计成可配置、可追踪
- 主模型失败后自动降级(不影响系统运行)
- 每次 fallback 写入日志(Trace + 原因)
- 支持 retry 多模型 AB 测试(验证哪个更稳)
五、构建多模型推理网关:
FastAPI × OpenRouter × Triton × 自定义策略集成方法
前面我们已经定义了策略中心、模型池、路由器,现在该将它们统一封装为一个稳定服务端点,提供:
- 对外 API:统一接收 Agent 请求,自动分配模型
- 对内逻辑:策略调度、模型转发、fallback、注册与监控
- 易于拓展:新增模型只需注册 Adapter
- 可接任何模型:OpenAI API、DeepSeek、本地推理、Triton 后端……
✅ 1. 多模型推理网关的职责清单
模块 | 作用 |
---|---|
接口管理层 | FastAPI 路由,统一接收请求 |
策略分发层 | 根据请求 meta 选出目标模型 |
模型调用层 | 实际调用模型(统一接口) |
日志/监控层 | 每轮调用结果、耗时、状态记录 |
动态注册层 | 支持新增/下线模型,不用改代码 |
🧠 FastAPI + Strategy + Adapter 结构图
+-------------------------------+
| FastAPI 接口入口 |
+-------------------------------+
↓
/inference_proxy (POST)
↓
+-------------------------------+
| Strategy Dispatcher |
+-------------------------------+
↓
+-------------------------------+
| Model Adapter Pool |
+-------------------------------+
↓ ↓ ↓ ↓
GPT4Adapter Qwen DeepSeek TritonAdapter
✅ 2. FastAPI 接口层代码示例
from fastapi import FastAPI, Request
from pydantic import BaseModel
class AgentRequest(BaseModel):
task_type: str
prompt: str
metadata: dict
app = FastAPI()
@app.post("/inference_proxy")
async def inference_proxy(req: AgentRequest):
model_name = strategy_center.select_model(req)
response = model_pool.call(model_name, req.prompt, req.metadata)
return {"model_used": model_name, "output": response}
✅ 3. 支持 Triton / 本地大模型 / API 模型的 Adapter 封装
class BaseAdapter:
def call(self, prompt: str, metadata: dict) -> str:
raise NotImplementedError
class GPT4Adapter(BaseAdapter):
def call(self, prompt, metadata):
return openai.ChatCompletion.create(...)
class TritonAdapter(BaseAdapter):
def call(self, prompt, metadata):
return triton_infer(prompt, model="llama2-13b")
class LocalQwenAdapter(BaseAdapter):
def call(self, prompt, metadata):
return qwen_pipeline.run(prompt)
✅ 4. 动态注册机制(支持热更新模型列表)
class ModelPool:
def __init__(self):
self.adapters = {}
def register_model(self, model_name, adapter: BaseAdapter):
self.adapters[model_name] = adapter
def unregister_model(self, model_name):
self.adapters.pop(model_name, None)
def call(self, model_name, prompt, metadata):
if model_name not in self.adapters:
raise ValueError("Model not found")
return self.adapters[model_name].call(prompt, metadata)
📌 配合模型健康监控服务实现热切换、负载分流
✅ 5. 日志与监控推荐字段(写入日志链)
{
"task_id": "t-0192",
"model_used": "deepseek-chat",
"agent_role": "Planner",
"duration_ms": 1231,
"token_used": 432,
"status": "success",
"fallback": false
}
六、总结:Agent 不只是前端智能体,
背后是整个推理服务基础设施
这篇写到这里,你已经拥有了一个:
支持多 Agent 协作、多模型路由、多引擎兼容、动态调度可插拔、上线可追踪可控的智能体后端部署系统。
✅ 再次回顾多模型系统演进路径:
阶段 | 特征 | 问题 |
---|---|---|
V1 | 单模型、单智能体 | 功能能跑,但扩展性差 |
V2 | 多智能体、单模型 | 无法覆盖多任务/高频需求 |
✅ V3 | 多智能体 × 多模型 × 策略调度 × 服务网关 | 支持线上部署与可控运营 |
✅ 为什么这是“刚需而非锦上添花”?
场景 | 如果你没做这套… | 如果你做了这套… |
---|---|---|
成本控制 | 一堆任务用贵模型跑死 | 智能分流,高频任务自动切小模型 |
系统容错 | 某模型挂掉系统崩溃 | fallback 切换稳定运行 |
用户运营 | 用户说慢、说贵、说错 | 可解释、可配置、可追踪 |
平台扩展 | 想接新模型改半天代码 | 动态注册即插即用 |
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。