【注册Huggingface】获取token

Hugging Face是一家美国公司,专门开发用于构建机器学习应用的工具。该公司的代表产品是其为自然语言处理应用构建的transformers库,以及允许用户共享机器学习模型和数据集的平台。

Huggingface 是一个开源的cv、nlp框架,提供了超过100,000个预训练模型和10,000个数据集,让你快速用科研大牛的模型进行cv、nlp等任务。
在这里插入图片描述

1.注册Huggingface

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.创建token

验证邮箱后,才能创建token
在这里插入图片描述
在这里插入图片描述

### Hugging Face Token获取与使用 #### 获取 API Token 为了能够访问 Hugging Face 提供的各种服务,如模型推理、数据集下载以及私有资源管理等功能,用户需要先注册并登录到 Hugging Face 官方网站[^1]。完成账户创建后,在个人资料页面可以找到 `Settings` 部分下的 `Access Tokens` 选项卡。点击该位置即可生成一个新的 API token 或查看已有的 token。 需要注意的是,此 token 应当妥善保管,因为它相当于用户的密码一样重要。一旦泄露可能会导致未经授权的操作发生于您的账号之上。 #### 设置环境变量 在本地开发环境中使用这个 token 前,推荐将其存储在一个安全的地方而不是硬编码进源码里。可以通过设置环境变量来实现这一点: ```bash export HF_AUTH_TOKEN="your_api_token_here" ``` 这样做的好处是可以轻松切换不同的 tokens 并且保持代码库干净整洁无敏感信息暴露风险[^2]。 #### Python 中的应用实例 如果是在基于 Python 的项目当中打算利用上述提到过的 token 来加载受保护的内容,则可通过如下方式导入 transformers 库之后传递参数 auth_token 给 from_pretrained 方法调用: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("private-model", use_auth_token=True) model = AutoModelForCausalLM.from_pretrained("private-model", use_auth_token=os.getenv('HF_AUTH_TOKEN')) ``` 这里假设您已经通过 os 模块读取到了之前设定好的环境变量中的实际值作为认证依据。 #### 扩展应用场景 除了基本的身份验证之外,API token 还能用于更复杂的交互场景比如上传自定义训练后的模型至 Hugging Face Hub 上分享给社区其他成员;或者参与某些特定竞赛活动期间提交解决方案等等用途广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华尔街的幻觉

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值