理解电源分配网络(PDN)的阻抗特性对电源完整性设计至关重要,这一篇文章我们来看看PDN阻抗的一个隐藏的参数,转移阻抗。根据端口的数量,阻抗矩阵包含自阻抗(对角元素)和转移阻抗(非对角元素)。自阻抗定义为端口电流与其自身电压的比值(其他端口开路):
移阻抗则定义为端口j注入电流时,端口i的电压响应(其他端口开路):
典型的PDN由去耦电容、缝合过孔和平面对腔体组成。通过分析自阻抗或转移阻抗的频域特性,可深入理解信号与腔体元件的相互作用。
当信号返回电流在腔体内扩散时,其覆盖面积逐渐增大,导致电感值持续上升,直至覆盖整个电路板。对于上图所示的径向传播电流环路,扩散电感可通过下式计算:
腔体的自阻抗和转移阻抗可分解为三项(下图为对数坐标系下的仿真示例):
公式与仿真结果表明:低频段阻抗呈容性,高频段呈感性。M(ω)项代表腔体模态共振,在共振频率处叠加于电感项。接下来重点讨论高频段扩散电感因信号衰减导致的转移阻抗变化,并解释自阻抗与转移阻抗的差异化行为。
选择一个边长为38in(96.52cm)、介质厚度3mil(0.076mm)的方形腔体进行仿真。选择大尺寸腔体旨在观察信号衰减与模态共振的受控变化。介质相对介电常数设为εr=4.3。探针U1位于板中心(端口1),U2距U1 6in(152.4mm)(端口2)。端口一端连接电源平面,另一端接地平面。探针周围的隔离孔直径为44mil(1.12mm),模拟信号过孔的反焊盘结构。
分别设置三种不同的介质损耗因子(tanδ=0.0、0.01、0.035)进行仿真。导体设为理想导体(PEC,电导率σ=1e10S/m),以抑制高频段导体损耗的影响。
仿真的频率范围为100MHz至10GHz(大尺寸腔体的模态共振频段)。由于损耗具有频率依赖性,高频模态的衰减效应更显著。下图展示了三种仿真的转移阻抗∣Z21∣幅值曲线。如预期,随着损耗因子增大,高频共振峰值的衰减更明显。但另一现象是:当tanδ=0时(蓝色曲线),阻抗基线随频率持续上升(源于扩散电感);而tanδ=0.01时(绿色曲线),阻抗约在6 GHz处趋于平坦; tanδ=0.035时(红色曲线),阻抗在2 GHz后开始下降。若电感阻抗随频率增加,为何∣Z21∣会下降?
电源/地平面对的衰减由传播常数的实部决定:
其中
为趋肤深度,σ为导体电导率。对于低损耗介质且平面间距远大于趋肤深度的情况,衰减α可近似为:
该公式包含导体损耗与介质损耗,但未计入表面粗糙度或辐射损耗。若仅改变介质损耗因子,则相同位置的电压比为:
前文图已表明,高频段转移阻抗的下降源于信号衰减导致的扩散面积缩小。理论上,扩散电感随电流覆盖面积增大而上升,但高频衰减会限制电流扩展范围。当衰减效应主导时,有效扩散半径RA减小,电感值下降。
此时存在两种竞争效应:电感阻抗随频率上升,而电感值因衰减下降。当二者平衡时,转移阻抗趋于平坦;超过临界频率后,电感值下降主导,阻抗开始降低(前文图中红色曲线更早出现下降)。
自阻抗(上图)在高频段仍持续上升,因其主要受探针附近区域的扩散电感影响。而转移阻抗对板边缘附近的电感变化更敏感。下图对比了公式与仿真的电感-径向距离曲线,验证了上式的准确性。
自阻抗的扩散电感由隔离孔半径r到RA的环形区域决定;而转移电感的计算涉及板边缘半径RB。由于RB/RA≫RA/r,且RA与RB量级相近,因此转移电感对板边缘变化更敏感。
下图又对比了tanδ=0.035时自阻抗与转移阻抗的电感提取值。自阻抗电感从1 GHz的0.08 nH降至10 GHz的0.04 nH(斜率减缓);转移电感则从5 pH降至0.5 pH(急剧下降),与前文图的阻抗跌落一致。
从上面的仿真结果可以看到,低损耗或高损耗材料的电源/地平面腔体转移阻抗均会在高频段出现下降。这是由于信号衰减导致返回电流覆盖面积缩小,扩散电感值降低。当电感下降速率超过频率上升导致的阻抗增长时,转移阻抗开始跌落。