超分辨率的含义很容易理解:将低分辨率的图像变成高分辨率的图像
传统的超分辨率技术可以分成三方面的技术:
- 基于插值
- 基于重建
- 基于学习(非深度学习)
基于插值的方法是很常用的,包括我们在OpenCV中使用的resize函数底层就是插值的方法。
常见的插值方法有:
- 最临近
- 双线性
- 双三次
基于深度学习的图像超分辨率方法
本质上还是监督学习的过程, 有三幅图片构成
- HR: High Resolution 原本的高分辨率图像
- LR: Low Resolution 将原高分辨率图像降级后得到的低分辨率图像
- SR: Super Resolution 由LR经网络生成的超分辨率图像
数学原理
降级
如何评价超分辨率图像质量
峰值信噪比主要衡量的是两幅图像之间的像素误差,单位是db
结构相似度主要衡量两幅图像之间的视觉质量
意见平均分是主观的评价方法,主要意思就是让不同的人来对超分图像打分
网络结构分类
这里结构的不同主要在于你在网络的哪部分对图像进行上采样(放大)
SRCNN
这里有了感知损失要说一下:
大致意思是单单使用图像之间像素的误差无法很好的衡量两幅图像的相近程度
在像素上的误差很小的基础上,我们也希望两幅图像在特征上也是相近的
因此,我们对原始HR和输出SR经过相同的固定参数的网络提取特征之后,计算特征之间的一个损失