异常检测论文解析|COCA:深度对比单类时间序列异常检测

论文提出COCA模型,结合对比学习和单类分类进行时序异常检测,通过新的对比单类损失函数避免超球崩溃,实验显示在AIOps和UCR数据集上优于其他基线方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:Deep Contrastive One-Class Time Series Anomaly Detection

地址:https://arxiv.org/abs/2207.01472

代码:https://github.com/ruiking04/COCA

一、论文简介

论文主要内容

  • 结合Contrastive Learn-ing和One-class做时序异常检测,提出论文的模型,简称COCA。

  • 提出一种新的时间序列CL范式,即“sequence contrast”。通过分析CL所解决的问题,明确了它的本质是表征。

  • 提出一种新的对比单类损失函数,既优化对比学习又优化单类分类,同时避免“超球崩溃”。

二、COCA的模型架构

如上图所示,分为以下几个模块:

(1)数据增强

抖动(噪声添加)和缩放(模式方向的幅度变化)。

(2) Feature encoder

2个卷积结构:

image-20230529163212600

(3) Seq2seq

Seq2Seq由一个Encoder和一个Decoder组成。

Encoder是一个3层长短期记忆(LSTM)

Decoder是一个3层长短期记忆(LSTM),后面是一个全连接(FC)层。

(4) Projector

使用带有一个隐藏层的MLP,应用BN和ReLU将表示映射到contrastive one-class loss的空间。

三、COCA的优化目标
回顾:One-class classification

One-class的代表性方法Deep SVDD的优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值