论文题目:Deep Contrastive One-Class Time Series Anomaly Detection
地址:https://arxiv.org/abs/2207.01472
代码:https://github.com/ruiking04/COCA
一、论文简介
论文主要内容
-
结合Contrastive Learn-ing和One-class做时序异常检测,提出论文的模型,简称COCA。
-
提出一种新的时间序列CL范式,即“sequence contrast”。通过分析CL所解决的问题,明确了它的本质是表征。
-
提出一种新的对比单类损失函数,既优化对比学习又优化单类分类,同时避免“超球崩溃”。
二、COCA的模型架构
如上图所示,分为以下几个模块:
(1)数据增强
抖动(噪声添加)和缩放(模式方向的幅度变化)。
(2) Feature encoder
2个卷积结构:
(3) Seq2seq
Seq2Seq由一个Encoder和一个Decoder组成。
Encoder是一个3层长短期记忆(LSTM)
Decoder是一个3层长短期记忆(LSTM),后面是一个全连接(FC)层。
(4) Projector
使用带有一个隐藏层的MLP,应用BN和ReLU将表示映射到contrastive one-class loss的空间。
三、COCA的优化目标
回顾:One-class classification
One-class的代表性方法Deep SVDD的优化