变邻域搜索算法(Variable Neighborhood Search,VNS)

目录

1.局部搜索算法的共性

2.变邻域搜索算法VNS

2.1 VND关键点

2.1.1 变邻域Variable Neighborhood Descent (VND)

2.1.2 扰动操作shaking procedure

2.2 VNS过程伪代码


变邻域搜索算法是对局部搜索算法的一种改进,是一种改进型的局部搜索算法。和自适应大邻域搜索属于不同的体系,但属于邻域的大家族。

变邻域搜索算法的主要思想是:采用多个不同的邻域进行系统搜索。首先采用最小的邻域搜索,当无法改进解时,则切换到稍大一点的邻域。如果能继续改进解,则退回到最小的邻域,否则继续切换到更大的邻域。

1.局部搜索算法的共性

局部搜索算法的统一框架描述为:

(1) 算法从一个或若干个初始解出发。

(2)在算法参数控制下由当前状态的邻域中产生若干个候选解。

(3)以某种策略在候选解中确定新的当前解。

(4)伴随控制参数的调节,重复执行上述搜索过程,直至满足算法终止条件。

(5)结束搜索过程并输出优化结果。

局部搜索涉及到的要素:1) 目标函数:用来判断解的优劣。2) 邻域的定义:根据不同问题,有着不同的邻域定义。3) 初始解的产生方法。4) 新解的产生和接受规则。5) 算法终止条件。

其中前两个要素的定义和算法要解决的特定问题有关,而且不同的人对同一问题可能有完全不同的定义。后三个要素定义的不同则会产生各种不同的局部搜索算法,它们的效率和最终解的质量也会有很大的差异。比如初始解可以多起点生成,差解是否接受可以用模拟退火等等。

2.变邻域搜索算法VNS

变邻域搜索算法(VNS)就是一种改进型的局部搜索算法。它利用不同的动作构成的邻域结构进行交替搜索,在集中性和疏散性之间达到很好的平衡。其思想可以概括为“变则通”。

变邻域搜索算法依赖于以下事实:

1) 一个邻域结构的局部最优解不一定是另一个邻域结构的局部最优解。

2) 全局最优解是所有可能邻域的局部最优解。

变邻域搜索算法主要由以下两个部分组成:

1) VARIABLE NEIGHBORHOOD DESCENT (VND)

2) SHAKING PROCEDURE——随机扰动

邻域就是指对当前解进行一个操作(这个操作可以称之为邻域动作)可以得到的所有解的集合。那么不同邻域的本质区别就在于邻域动作的不同了。

2.1 VND关键点

2.1.1 变邻域Variable Neighborhood Descent (VND)

VND其实就是一个算法框架,它的过程描述如下:

1) 给定初始解S; 定义m个邻域,记为N_k(k = 1, 2, 3......m);i = 1。

2) 使用邻域结构N_i(即 N_i(S))进行搜索,如果在N_i(S)里找到一个比S更优的解S′,则令S=S′, i=1 

3) 如果搜遍邻域结构N_i仍找不到比S更优的解,则令i++

4) 如果i≤m ,转步骤2。

5) 输出最优解S

VND的图解如下:

1) 当在本邻域搜索找不出一个比当前解更优的解的时候,我们就跳到下一个邻域继续进行搜索。如图中虚黑线所示。

2) 当在本邻域搜索找到了一个比当前解更优的解的时候,我们就跳回第一个邻域重新开始搜索。如图中红线所示。

之前我们把局部搜索比作爬山的过程,那么每变换一次邻域,也可以理解为切换了搜索的地形(landscape)。效果如下 :

每一次跳跃,得到都是一个新的世界……

2.1.2 扰动操作shaking procedure

说白了就是一个扰动算子,类似于邻域动作的这么一个东西。

通过这个算子,可以产生不同的邻居解。虽然名词很多看起来很高大上,扰动、抖动、邻域动作这几个本质上还是没有什么区别的。都是通过一定的规则,将一个解变换到另一个解而已。

2.2 VNS过程伪代码

在综合了前面这么多的知识以后,VNS的过程其实非常简单, 直接看伪代码,一目了然:

做点说明吧。伪代码中N_kN_l代表的邻域集合,分别是给ShakingVND使用的,这两点希望大家要格外注意,区分开来哈。这两个邻域集合可以是一样的,也可以不一样。

基于聚类的变邻域搜索算法是一种改进的搜索策略,通常用于数据挖掘和机器学习领域,尤其是在处理大规模高维数据集时。这种算法结合了聚类技术和动态调整的邻居范围,提高了搜索效率。 基本流程包括以下步骤: 1. **数据预处理和聚类**:首先对数据进行清洗、标准化,并使用聚类算法(如K-means、DBSCAN等)将其分为多个有意义的簇。 2. **初始化**:每个查询点开始时在其所属的簇内搜索,即初始邻域。 3. **扩大邻域**:如果当前簇内的结果不满意,算法会扩大搜索范围到相邻簇,寻找潜在的好解。这个过程可能会递归地发生在新发现的簇上,直到达到预设的停止条件。 4. **评估和更新**:每次搜索后,算法会评估新找到的结果是否优于当前最优解,如果是,则更新最优解。 下面是一个简化的Python伪代码示例: ```python def var_neighbor_search(data, query, initial_cluster, max_neighbors=None): cluster_members = get_cluster_members(initial_cluster, data) best_solution = None current_neighbors = cluster_members while not best_solution or len(current_neighbors) < max_neighbors: expanded_neighbors = expand_neighborhood(current_neighbors, data) for new_neighbor in expanded_neighbors: solution = search_in_cluster(new_neighbor, query) if is_better(solution, best_solution): best_solution = solution current_neighbors = [new_neighbor] + expanded_neighbors # 更新邻域范围 current_neighbors = expand_clusters(current_neighbors, data) return best_solution # ...其他辅助函数... ``` 请注意,这只是一个简化版本,实际的实现可能需要考虑更复杂的数据结构和优化策略。对于具体的代码实现,你可以在开源库如Scikit-learn或PyClustering中找到,或者根据上述思路自定义编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值