目录
2.1.1 变邻域Variable Neighborhood Descent (VND)
变邻域搜索算法是对局部搜索算法的一种改进,是一种改进型的局部搜索算法。和自适应大邻域搜索属于不同的体系,但属于邻域的大家族。
变邻域搜索算法的主要思想是:采用多个不同的邻域进行系统搜索。首先采用最小的邻域搜索,当无法改进解时,则切换到稍大一点的邻域。如果能继续改进解,则退回到最小的邻域,否则继续切换到更大的邻域。
1.局部搜索算法的共性
局部搜索算法的统一框架描述为:
(1) 算法从一个或若干个初始解出发。
(2)在算法参数控制下由当前状态的邻域中产生若干个候选解。
(3)以某种策略在候选解中确定新的当前解。
(4)伴随控制参数的调节,重复执行上述搜索过程,直至满足算法终止条件。
(5)结束搜索过程并输出优化结果。
局部搜索涉及到的要素:1) 目标函数:用来判断解的优劣。2) 邻域的定义:根据不同问题,有着不同的邻域定义。3) 初始解的产生方法。4) 新解的产生和接受规则。5) 算法终止条件。
其中前两个要素的定义和算法要解决的特定问题有关,而且不同的人对同一问题可能有完全不同的定义。后三个要素定义的不同则会产生各种不同的局部搜索算法,它们的效率和最终解的质量也会有很大的差异。比如初始解可以多起点生成,差解是否接受可以用模拟退火等等。
2.变邻域搜索算法VNS
变邻域搜索算法(VNS)就是一种改进型的局部搜索算法。它利用不同的动作构成的邻域结构进行交替搜索,在集中性和疏散性之间达到很好的平衡。其思想可以概括为“变则通”。
变邻域搜索算法依赖于以下事实:
1) 一个邻域结构的局部最优解不一定是另一个邻域结构的局部最优解。
2) 全局最优解是所有可能邻域的局部最优解。
变邻域搜索算法主要由以下两个部分组成:
1) VARIABLE NEIGHBORHOOD DESCENT (VND)
2) SHAKING PROCEDURE——随机扰动
邻域就是指对当前解进行一个操作(这个操作可以称之为邻域动作)可以得到的所有解的集合。那么不同邻域的本质区别就在于邻域动作的不同了。
2.1 VND关键点
2.1.1 变邻域Variable Neighborhood Descent (VND)
VND其实就是一个算法框架,它的过程描述如下:
1) 给定初始解S; 定义m个邻域,记为N_k(k = 1, 2, 3......m);i = 1。
2) 使用邻域结构N_i(即 N_i(S))进行搜索,如果在N_i(S)里找到一个比S更优的解S′,则令S=S′, i=1 。
3) 如果搜遍邻域结构N_i仍找不到比S更优的解,则令i++。
4) 如果i≤m ,转步骤2。
5) 输出最优解S
VND的图解如下:
1) 当在本邻域搜索找不出一个比当前解更优的解的时候,我们就跳到下一个邻域继续进行搜索。如图中虚黑线所示。
2) 当在本邻域搜索找到了一个比当前解更优的解的时候,我们就跳回第一个邻域重新开始搜索。如图中红线所示。
之前我们把局部搜索比作爬山的过程,那么每变换一次邻域,也可以理解为切换了搜索的地形(landscape)。效果如下 :
每一次跳跃,得到都是一个新的世界……
2.1.2 扰动操作shaking procedure
说白了就是一个扰动算子,类似于邻域动作的这么一个东西。
通过这个算子,可以产生不同的邻居解。虽然名词很多看起来很高大上,扰动、抖动、邻域动作这几个本质上还是没有什么区别的。都是通过一定的规则,将一个解变换到另一个解而已。
2.2 VNS过程伪代码
在综合了前面这么多的知识以后,VNS的过程其实非常简单, 直接看伪代码,一目了然:
做点说明吧。伪代码中N_k和N_l代表的邻域集合,分别是给Shaking和VND使用的,这两点希望大家要格外注意,区分开来哈。这两个邻域集合可以是一样的,也可以不一样。