分支定界、分支切割、分支定价的区别

目录

1.从原理的角度

(1)分支定界:

(2)分支切割:

(3)分支定价:

2.从分支树的角度

(1)分支定界

(2)分支切割

(3)分支定价


1.从原理的角度

(1)分支定界:

仅添加整数割(本质上是一种特殊的割平面)。

(2)分支切割:

添加(根据问题)定制的割平面(规则/指标)。比如VRP问题中的k-paths割,即若干顾客的需求量至少需要的车辆数。

(3)分支定价:

将原问题重写,如VRP问题中将x_{ijk}的3-index模型改写为路径y_{r}的1-index模型(RMP);然后松弛主问题得到RLMP,再根据子问题的检验数不断往RLMP中添加新的路径,再次求解RLMP直到求到RLMP的最优解。若该解是非整数解则分支。

该算法比前两者难的原因是,需要改写模型;而且需要求解子问题(设计出有效的算法,比如标签算法,支配规则等)。别的与前两者区别不大。

2.从分支树的角度

从分支树的角度,我觉得更好理解。

(1)分支定界

可以看到,通过定界和剪支操作,比全枚举(二叉树)要少了很多枝。

(2)分支切割

可以看到比着分支定界算法枝干又减少了,但是两个叶子节点之间多了一些点(蓝框),是通过红框中的cut而求解产生的新的点。

 (3)分支定价

可以看到它在叶子节点做了更多的工作,所以最终实际上的节点更少。

总结:难度系数,分支定界<分支切割<分支定价。难的点在于分支切割要找到有效的加强的割平面(cut);分支定价需要重写模型,写出主问题和子问题,还需要求解子问题 。

<think>好的,我需要回答用户关于分支定价算法中的分支策略的问题。用户想要了解分支策略的解释和实现方法。首先,我需要回顾之前提供的引用内容,看看有没有相关的信息。引用中多次提到分支定价算法结合了分支定界和列生成,其中分支定界负责处理整数约束,而列生成用于求解线性松弛问题。 首先,用户的问题集中在分支策略上,所以需要详细解释在分支定价分支策略的作用和具体方法。根据引用[4],分支定价算法通过分支来处理整数规划问题,因为列生成只能解决线性规划部分。因此,分支策略需要有效地分割解空间,同时保持列生成的效率。 接下来,我需要确定分支策略的常见类型。通常,在分支定界中,分支策略包括变量分支(如选择不满足整数条件的变量)、约束分支等。但在分支定价中,由于问题结构特殊(例如cutting stock问题中的模式),可能需要设计适合问题特性的分支策略,比如基于模式使用次数的分支,或者基于切割长度的分支,如引用[2]提到的cutting stock问题。 另外,引用[3]提到分支定价的流程与分支定界相似,但子节点使用列生成来定界。因此,分支策略需要考虑到如何在不破坏列生成可行性的情况下进行分割,否则每次分支后可能需要重新生成列,影响效率。 实现方法方面,需要考虑如何选择分支变量或约束,如何维护问题结构以便列生成仍然有效。例如,在cutting stock问题中,可能选择某个物品的需求未被整数满足的模式进行分支,创建两个子节点:一个要求该模式必须使用至少k次,另一个最多k-1次。这样保持问题结构,使得列生成仍能有效生成新列。 需要注意的是,分支策略需要避免对称性,减少重复计算,同时保证解的可行性和效率。可能还需要结合启发式方法选择分支节点,比如最不可行变量优先。 最后,总结分支策略的关键点,并生成相关问题,如不同策略的比较、实现挑战或应用案例。</think>### 分支定价算法中的分支策略解释与实现方法 在分支定价算法(Branch and Price, B&P)中,**分支策略**是处理整数约束的核心机制,其目标是通过逐步分割解空间来逼近整数最优解。以下从策略原理、实现方法和关键问题展开说明: --- #### 一、分支策略的核心作用 1. **处理整数约束** 列生成算法仅能求解线性松弛问题,但实际需求往往是整数解(如切割问题中的整数切割次数)。分支策略通过添加约束条件,将原问题划分为子问题(子节点),逐步排除非整数解[^4]。 2. **保持列生成可行性** 分支需确保子问题仍适用列生成算法。例如,在切割问题中,若分支直接限制某变量的整数值,可能导致列生成无法生成有效模式,因此需设计“兼容性”分支规则[^2]。 --- #### 二、常见分支策略及实现方法 根据问题特性,分支策略可分为以下类型: 1. **变量分支(Variable Branching)** - **原理**:选择松弛解中非整数的变量(如切割模式的使用次数$x_j$),创建两个子节点: - $x_j \geq \lceil x_j^* \rceil$(向上取整) - $x_j \leq \lfloor x_j^* \rfloor$(向下取整) - **适用场景**:变量具有明确物理意义(如物品数量)[^1]。 2. **约束分支(Constraint Branching)** - **原理**:针对组合优化问题中的结构特性设计约束。例如在切割问题中: - 分支限制某物品$i$在切割模式中的总使用次数$\sum_j a_{ij}x_j$,强制其为整数。 - 或对切割长度进行分段限制(如某段长度必须包含/不包含特定尺寸)[^4]。 3. **列生成友好分支(Column-Generation-Friendly Branching)** - **原理**:避免直接分支导致列生成子问题无法求解。例如: - 选择“最不可行”的变量分支,或基于问题对称性设计分支规则。 - 在切割问题中,可能选择某物品的余量(未被满足的整数需求)作为分支对象[^3]。 --- #### 三、实现步骤与关键技术 1. **分支选择标准** - **最不可行优先**:选择离整数最近的变量(如$x_j=1.8$优先于$x_j=0.5$)。 - **影响最大化**:选择对目标函数影响最大的变量,加速剪枝。 2. **子问题维护** - 每次分支后,需更新主问题(添加分支约束)并重新调用列生成求解松弛问题。 - 确保子问题的定价问题(生成新列)仍能有效运行,避免约束破坏列生成的结构[^4]。 3. **示例:切割问题中的分支实现** ```python # 伪代码:基于切割需求的分支 def branch(current_node): relaxed_solution = solve_lp_with_column_generation(current_node) for item in items: if relaxed_solution.usage(item) not integer: # 分支1:强制该物品总使用次数 ≥ ceil(current_usage) new_constraint = (sum(a_ij * x_j for pattern) ≥ ceil(current_usage)) create_child_node(current_node, new_constraint) # 分支2:强制该物品总使用次数 ≤ floor(current_usage) new_constraint = (sum(a_ij * x_j for pattern) ≤ floor(current_usage)) create_child_node(current_node, new_constraint) return ``` --- #### 四、挑战与优化方向 - **对称性问题**:同类分支可能导致重复计算,需设计去重机制。 - **计算效率**:频繁调用列生成可能增加时间成本,需结合启发式剪枝或并行计算[^3]。 - **动态策略**:根据问题进展自适应调整分支顺序(如优先深度搜索或广度搜索)[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值