细粒度IP定位参文11(GCN):Semi-supervised classification with graph convolutional networks(2016年)

本文深入探讨了图卷积网络(GCN)在半监督节点分类中的应用,揭示了传统正则项的局限,并提出GCN的节点信息传递规则,以提升分类准确率和计算效率。文章详细介绍了Laplacian矩阵、谱图卷积方法和GCN的卷积过程,以及与CNN的对比。GCN通过简化Chebyshev Filter实现了高效卷积,通过多层堆叠进行节点特征学习,有效解决了无监督节点的分类问题。
摘要由CSDN通过智能技术生成

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 2016, arXiv:1609.02907. (基于图卷积网络的半监督分类)

论文地址:https://arxiv.org/pdf/1609.02907.pdf

基于图卷积网络的半监督分类:提升了图卷积的性能,使用切比雪夫多项式的1阶近似完成了高效的图卷积架构。

这里列出论文相关的知识列表,对于扩展理解部分,以Ref.X的形式标注,如果读者已经很熟悉相关内容,可以直接跳过相应部分。

  1. Laplacian Matrix:图上的离散微分算子、图信号的光滑度、基本性质、特征值和特征向量、归一化。
  2. Graph Fourier Transform:类比傅里叶变换、图傅里叶变换。
  3. Chebyshev Polynomial:多项式的定义、性质。
  4. Chebyshev Filter:滤波器形式简化、多项式阶数与卷积邻域的联系。
  5. GCN:单通道Unit、多通道Stack、对比CNN、GCN卷积理解。

一、论文整体逻辑

依照最简单的论文逻辑要素,把握问题、方法、贡献这三点,基本上就能拎清一篇论文的故事结构。GCN论文的逻辑梳理为:


1、问题

在半监督的节点分类任务中,前人方法存在以下两个瓶颈:

问题a. 代价函数中,正则项对相邻节点的相似性束,虽然可以间接传递监督信号,但该假设可能不成立,不利于节点准确分类。

问题b. 前人谱图卷积的计算复杂度较高。

2、方法

针对a:提出基于GCN的节点信息传递规则,抛弃正则项。

针对b:通过简化Chebyshev Filter的参数,构造GCN基本单元。

3、贡献

验证a. 基于GCN的节点信息传递规则,能提高半监督节点分类任务的准确率。

验证b. 上述方法的计算效率提升。


二、问题

1、正则项的局限

针对半监督的节点分类问题,前人方法中的代价函数有如下一般形式:

其中,代价函数中的L_{0}项负责监督有标签的节点,最小化正则项L_{reg} 会起到两个作用:

1.1 传递监督信号 (+)

对相邻连通节点(即A_{ij}≠0)的特征相似约束,使得无监督节点与其靠近的监督节点特征接近,并由此扩散至全部无监督节点。

1.2 节点特征平滑 (-)

相邻连通节点特征f(x_{i})f(x_{j})的差异较小,单个节点的个性特征被平滑。

节点特征平滑会让学习的节点特征呈现如下特征:

图1. 节点特征平滑

然而,相邻节点的特征相似性假设可能存在局限。以图2中的情况为例:若以经济、人口、面积等作为城市特征,那么北京、上海城市群内的周边城市,与中心城市的相似程度可能并不高,此时相似性假设失效。

图2. 正则项假设局限


2、Ref.1 Laplacian Matrix

Laplacian Matrix:图上的离散微分算子、图信号的光滑度、基本性质、特征值和特征向量、归一化。

2.1 Laplacian Matrix是图上的离散Laplacian算子

(1)数量值函数与向量值函数

(2)Nabla算子

(3)Nabla算子

(4)Laplacian算子的离散形式—Image

一阶导数的离散计算方式:

二阶导数的离散计算方式:

以二维图像f(x,y)为例,Laplacian算子对(x,y)处中心像素作用的计算方式:

图3. 二维图像Laplacian算子作用

Laplacian算子对(x,y)处像素作用的结果为\Delta f从计算的角度,统计了周围像素对中心像素的扰动总和;从散度的角度,(x,y)处的梯度\bigtriangledown f的散度,即该点处源的强度。注意到计算一阶差分时,是f(x+1)-f(x),即f(x+1)f(x)变化后的结果。那么对应二维图像,\Delta f计算的是中心点(x,y)到周围点的变化总和。那么,若\Delta f>0,说明"能量"从中心向四周流动,有正源存在;反之,若\Delta f<0,则有负源(汇)存在。

(5)Laplacian算子的离散形式—Graph

图4. 图的Laplacian算子作用

那么࿰

很抱歉,根据提供的引用内容,我无法提供关于"SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS"代码的信息。引用的内容主要介绍了图上结点分类的半监督问题以及相关的研究方法和改进。如果您需要获取该代码,建议您查阅相关的学术论文或者在开源代码平台上搜索相关的项目。 #### 引用[.reference_title] - *1* [Semi-supervised classification with graph convolutional networks](https://blog.csdn.net/weixin_41362649/article/details/113232898)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Kipf-GCNSemi-Supervised Classification With Graph Convolutional Networks》论文详解](https://blog.csdn.net/u012762410/article/details/127177181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Semi-Supervised Classification with Graph Convolutional Networks](https://blog.csdn.net/m0_37924639/article/details/124884547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值