[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 2016, arXiv:1609.02907. (基于图卷积网络的半监督分类)
论文地址:https://arxiv.org/pdf/1609.02907.pdf
基于图卷积网络的半监督分类:提升了图卷积的性能,使用切比雪夫多项式的1阶近似完成了高效的图卷积架构。
这里列出论文相关的知识列表,对于扩展理解部分,以Ref.X的形式标注,如果读者已经很熟悉相关内容,可以直接跳过相应部分。
- Laplacian Matrix:图上的离散微分算子、图信号的光滑度、基本性质、特征值和特征向量、归一化。
- Graph Fourier Transform:类比傅里叶变换、图傅里叶变换。
- Chebyshev Polynomial:多项式的定义、性质。
- Chebyshev Filter:滤波器形式简化、多项式阶数与卷积邻域的联系。
- GCN:单通道Unit、多通道Stack、对比CNN、GCN卷积理解。
一、论文整体逻辑
依照最简单的论文逻辑要素,把握问题、方法、贡献这三点,基本上就能拎清一篇论文的故事结构。GCN论文的逻辑梳理为:
1、问题
在半监督的节点分类任务中,前人方法存在以下两个瓶颈:
问题a. 代价函数中,正则项对相邻节点的相似性束,虽然可以间接传递监督信号,但该假设可能不成立,不利于节点准确分类。
问题b. 前人谱图卷积的计算复杂度较高。
2、方法
针对a:提出基于GCN的节点信息传递规则,抛弃正则项。
针对b:通过简化Chebyshev Filter的参数,构造GCN基本单元。
3、贡献
验证a. 基于GCN的节点信息传递规则,能提高半监督节点分类任务的准确率。
验证b. 上述方法的计算效率提升。
二、问题
1、正则项的局限
针对半监督的节点分类问题,前人方法中的代价函数有如下一般形式:
其中,代价函数中的项负责监督有标签的节点,最小化正则项 会起到两个作用:
1.1 传递监督信号 (+)
对相邻连通节点(即≠0)的特征相似约束,使得无监督节点与其靠近的监督节点特征接近,并由此扩散至全部无监督节点。
1.2 节点特征平滑 (-)
相邻连通节点特征与的差异较小,单个节点的个性特征被平滑。
节点特征平滑会让学习的节点特征呈现如下特征:
图1. 节点特征平滑
然而,相邻节点的特征相似性假设可能存在局限。以图2中的情况为例:若以经济、人口、面积等作为城市特征,那么北京、上海城市群内的周边城市,与中心城市的相似程度可能并不高,此时相似性假设失效。
图2. 正则项假设局限
2、Ref.1 Laplacian Matrix
Laplacian Matrix:图上的离散微分算子、图信号的光滑度、基本性质、特征值和特征向量、归一化。
2.1 Laplacian Matrix是图上的离散Laplacian算子
(1)数量值函数与向量值函数
(2)Nabla算子
(3)Nabla算子
(4)Laplacian算子的离散形式—Image
一阶导数的离散计算方式:
二阶导数的离散计算方式:
以二维图像为例,Laplacian算子对处中心像素作用的计算方式:
图3. 二维图像Laplacian算子作用
Laplacian算子对处像素作用的结果为。从计算的角度,统计了周围像素对中心像素的扰动总和;从散度的角度,是处的梯度的散度,即该点处源的强度。注意到计算一阶差分时,是,即是变化后的结果。那么对应二维图像,计算的是中心点到周围点的变化总和。那么,若>0,说明"能量"从中心向四周流动,有正源存在;反之,若<0,则有负源(汇)存在。
(5)Laplacian算子的离散形式—Graph
图4. 图的Laplacian算子作用
那么