GCN阅读 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

本文是对第三代GCN的论文的阅读笔记


一、摘要

在看这篇第三代GCN之前已经看过了前两篇初代GCN,可以看到传统GCN是一代一代发展而来的。GCN应用的思想也是由CNN而来的。在CNN中,卷积被定义成不同位置的特征检测器,卷积核是具备局部平移不变性的特征的,通过计算中心像素点以及相邻像素点的加权和来构成feature map实现空间特征的提取。 而在非欧式几何空间的图结构上,无法按照传统的CNN中的方式进行卷积操作。

GCN的核心思想就是在一个graph上定义一个关于graph 的卷积操作,实现这一过程需要借助图的拉普拉斯矩阵。

三代GCN发展

  • 第一代GCN是在Spatial空间域进行的,将特征矩阵直接作为输入,将 d i a g ( h ^ ( λ l ) ) diag(\hat h(\lambda _l)) diag(h^(λl)) 直接当成卷积核 d i a g ( θ l ) diag(\theta_l) diag(θl)。但在Multiscale graph上的时间复杂度非常高,达到O(n2),且卷积核没有空间局部性。
  • 第二代是在Spectral频谱域进行的,将特征矩阵换了一种形式,不需要进行特征分解了。把 h ^ ( λ l ) \hat h(\lambda _l) h^(λl)设计成了 ∑ j = 0 K α j λ j k \sum_{j=0} ^K \alpha_j \lambda_j^k j=0Kαjλjk,在参数复杂度和运算复杂度上化简了很多。
  • 第三代不使用Laplacian Matrix对图进行卷积,而是采用切比雪夫多项式来作为卷积核。它的特点是不需要对特征向量进行分解。本文主要就是对此方法写一下总结和理解。

原文摘要

  • 半监督式学习
  • 在图的边数上线性缩放
  • 既编码局部图特征,又编码节点的特征

二、Introduction

Contribution

  • 首先对神经网络制定了一次简单的、效果明显的层级前向传播规则,来看看他在一次近似的频谱域图卷积中是如何被激活的。
  • 其次阐释了这种图形式的神经网络模型是如何被应用在快和可扩展的节点分类上的。

三、Graph中的快速近似卷积

前向传播引用以下网址中的内容

https://blog.csdn.net/qq_41727666/article/details/84640549

前向传播公式
在论文中的后续的介绍中,大概都是根据此公式来推导的。
在之前频域的图卷积过程中,考虑使用了
g θ ∗ x = U g θ ( Λ ) U T x g_\theta *x=Ug_\theta (\Lambda) U ^T x gθx=Ugθ(Λ)UTx 其中 g θ g_\theta gθ为卷积核, θ \theta θ为参数, Λ \Lambda Λ 是特征值构成的对角矩阵,U为拉普拉斯矩阵L的特征向量矩阵,拉普拉斯矩阵为
L = I N − D − 1 / 2 A D − 1 / 2 = U Λ U T L=I_N-D^{-1/2}AD^{-1/2} =U\Lambda U^T L=IND1/2AD1/2=UΛUT
但这个公式的计算十分复杂,所以有人提出了一种改造方法,从卷积核开始改造。

引入切比雪夫多项式

这种方法的思路就是使用 g θ ( Λ ) g_\theta(\Lambda) gθ(Λ)可以背切比雪夫多项式近似的替换。
切比雪夫多项式是:
切比雪夫多项式
于是产生了新的卷积核卷积核
其中, Λ ^ = 2 Λ / λ m a x − I N , λ m a x 是 L 的 最 大 特 征 值 \hat\Lambda =2\Lambda/\lambda_{max}-I_N,\lambda_{max}是L的最大特征值 Λ^=2Λ/λmaxINλmaxL
最后得到如下的卷积公式:在这里插入图片描述

  • L ^ = 2 L / λ m a x − I N \hat L =2L/\lambda _{max}-I_N L^=2L/λmaxIN
    这个公式将参数简化到了K个 (此处的K为拉普拉斯算子中的K阶多项式,取决于离中心节点的K-hop,即K阶邻居。而且这个式子不需要再对拉普拉斯矩阵L进行变换。) 以上都是传统的GCN方法。

四、线性模型

K=1:两个参数的模型

设置K=1后,公式就变成关于L的线性方程了。这种分层线性公式允许建立更深入的模型。

这里设置K=1,从之前的解释来看,相当于依赖离中心节点的1步节点,也就是只关心距离该中心节点的步长为1的节点。why?

接下来近似 λ m a x ≈ 2 \lambda _{max}\approx2 λmax2,可以将公式进一步化简。在这里插入图片描述
在公式里的 θ 0 和 θ 1 \theta_0和\theta_1 θ0θ1是可以在整个图中共享的。

进一步简化

此时,如果将 θ 0 和 θ 1 \theta_0和\theta_1 θ0θ1设置成相反的关系,那么原式将更加简单。在论文描述中,

进一步限制参数的数量来处理过你和和最小化每层操作的数量(例如矩阵乘法)是有益的。

重新整理后在论文中给出了最后的具有C个输入通道信号(每个节点C维特征)和F个滤波器的映射。

总结

本文提出了一种新的半监督的分类方法,主要还是基于ChebNet的方法进行了改进,是基于图上谱卷积的一阶近似,能够对图结构和节点特征进行编码。计算效率有了提升。

半监督学习是什么?

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值