常见损失函数深度剖析之回归

常见损失函数深度剖析之回归


 
###1.均方误差损失函数

 均方误差损失函数——MSE,通常是回归问题的首选损失函数,很多机器学习框架中的回归分析模块,都默认使用MSE。

 如果目标变量满足高斯分布,或近似满足高斯分布,可能就应更偏向于使用均方差函数作为模型的代价函数。

 误差平方化将会使较大的误差被放大,意味着模型主要针对大误差进行惩罚。如果用神经网络进行回归预测,最后的激活层也推荐使用线性激活函数。

###2.均方对数误差损失函数

 对于均方对数误差损失函数——MSLE来说,当回归模型直接预测无标度的量时,它可能就更合适。

 模型无标度的预测,即为预测值有比较大的跨度(可以参照指数增长来理解),这种对大数值的预测能力是模型所需要的。

如果在不需要对大值预测误差施以如均方误差损失那样强的惩罚时,可以考虑使用均方对数误差损失函数。

###3.平均绝对值误差损失函数

 在某些回归问题中,当目标变量绝多时候都满足高斯分布,但也存在少量极端值的情况下,平均绝对值误差损失——MAE,因其对误差统一施以相等的惩罚,在这些场合可能就是一种更适合的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值