常见损失函数深度剖析之回归
###1.均方误差损失函数
均方误差损失函数——MSE,通常是回归问题的首选损失函数,很多机器学习框架中的回归分析模块,都默认使用MSE。
如果目标变量满足高斯分布,或近似满足高斯分布,可能就应更偏向于使用均方差函数作为模型的代价函数。
误差平方化将会使较大的误差被放大,意味着模型主要针对大误差进行惩罚。如果用神经网络进行回归预测,最后的激活层也推荐使用线性激活函数。
###2.均方对数误差损失函数
对于均方对数误差损失函数——MSLE来说,当回归模型直接预测无标度的量时,它可能就更合适。
模型无标度的预测,即为预测值有比较大的跨度(可以参照指数增长来理解),这种对大数值的预测能力是模型所需要的。
如果在不需要对大值预测误差施以如均方误差损失那样强的惩罚时,可以考虑使用均方对数误差损失函数。
###3.平均绝对值误差损失函数
在某些回归问题中,当目标变量绝多时候都满足高斯分布,但也存在少量极端值的情况下,平均绝对值误差损失——MAE,因其对误差统一施以相等的惩罚,在这些场合可能就是一种更适合的选择。