基于主成分分析结合随机森林(PCA-RF)的数据多特征分类预测 Matlab代码[可显示原始特征贡献率]

目录

1、代码简介

2、代码运行结果展示

3、代码获取方式


1、代码简介

基于PCA-RF的数据多特征分类预测 Matlab代码(多输入单输出)[可显示原始特征贡献率]

程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

1.首先通过主成分分析PCA将数据进行降维,会显示原始特征对应的贡献率(不是贡献率排序,不会让你对应不到对应特征),特征选取要求为累计贡献率大于90%(可自定义修改)。

2.将数据降维后的数据导入RF进行分类预测

3.PCA和RF分类两个内容写在同一个main里,运行一个main一键出图和结果(如下图)

4.RF可定制更换为其他模型BP、SVM、RBF、LSSVM、CNN、LSTM等以及组合模型也可以!

注:

1️⃣、运行环境要求MATLAB版本为2018b及其以上。

2️⃣、代码中文注释清晰,质量极高

3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等,如下所示

4️⃣、赠送测试数据集,可以直接运行源程序。 适合新手小白

2、代码运行结果展示

3、代码获取方式

点击下方了解更多!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值