基于主成分分析结合随机森林(PCA-RF)的数据多特征分类预测 Matlab代码[可显示原始特征贡献率]

目录

1、代码简介

2、代码运行结果展示

3、代码获取方式


1、代码简介

基于PCA-RF的数据多特征分类预测 Matlab代码(多输入单输出)[可显示原始特征贡献率]

程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

1.首先通过主成分分析PCA将数据进行降维,会显示原始特征对应的贡献率(不是贡献率排序,不会让你对应不到对应特征),特征选取要求为累计贡献率大于90%(可自定义修改)。

2.将数据降维后的数据导入RF进行分类预测

3.PCA和RF分类两个内容写在同一个main里,运行一个main一键出图和结果(如下图)

4.RF可定制更换为其他模型BP、SVM、RBF、LSSVM、CNN、LSTM等以及组合模型也可以!

注:

1️⃣、运行环境要求MATLAB版本为2018b及其以上。

2️⃣、代码中文注释清晰,质量极高

3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等,如下所示

4️⃣、赠送测试数据集,可以直接运行源程序。 适合新手小白

2、代码运行结果展示

3、代码获取方式

点击下方了解更多!

### starRC、LEF 和 DEF 文件的 EDA 工具使用教程 #### 关于 starRC 的使用说明 starRC 是由 Synopsys 开发的一款用于寄生参数提取 (PEX) 的工具,在 detail routing 完成之后被调用,以提供精确的电阻电容延迟分析数据[^2]。该工具能够处理复杂的多层互连结构并支持多种工艺节点。 对于 starRC 的具体操作指南,通常可以从官方文档获取最权威的信息。访问 Synopsys 官方网站的技术资源页面,可以找到最新的产品手册以及应用笔记等资料。此外,还可以通过在线帮助系统获得交互式的指导和支持服务。 #### LEF 和 DEF 文件格式解析及其在 Cadence 中的应用 LEF(Library Exchange Format)和 DEF(Design Exchange Format)是两种广泛应用于集成电路布局布线阶段的标准文件格式之一[^3]。前者主要用于描述标准单元库中的元件几何形状;后者则记录了整个芯片版图的设计信息,包括但不限于各个模块的位置关系、网络连接情况等重要细节。 当涉及到这些文件类型的编辑或读取时,Cadence 提供了一系列强大的平台级解决方案,比如 Virtuoso Layout Editor 就可以直接打开并修改 LEF/DEF 格式的项目工程。为了更好地理解和运用这两种文件格式,建议参阅 Cadence 发布的相关培训材料或是参加其举办的专项课程学习活动。 ```bash # 示例命令:查看 LEF 或 DEF 文件内容 cat my_design.lef cat my_design.def ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值