目录
1、代码简介
基于PCA-RF的数据多特征分类预测 Matlab代码(多输入单输出)[可显示原始特征贡献率]
程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
1.首先通过主成分分析PCA将数据进行降维,会显示原始特征对应的贡献率(不是贡献率排序,不会让你对应不到对应特征),特征选取要求为累计贡献率大于90%(可自定义修改)。
2.将数据降维后的数据导入RF进行分类预测
3.PCA和RF分类两个内容写在同一个main里,运行一个main一键出图和结果(如下图)
4.RF可定制更换为其他模型BP、SVM、RBF、LSSVM、CNN、LSTM等以及组合模型也可以!
注:
1️⃣、运行环境要求MATLAB版本为2018b及其以上。
2️⃣、代码中文注释清晰,质量极高
3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等,如下所示
4️⃣、赠送测试数据集,可以直接运行源程序。 适合新手小白
2、代码运行结果展示
3、代码获取方式
点击下方了解更多!