“盲狗”具身定位:最新本体感知足式机器人里程计

该论文提出四足机器狗的多节点IMU本体感知定位方法,在传统基础上添加足部多节点IMU辅助估计,用扩展卡尔曼滤波融合信息。此方法能估计足部触地模式与打滑情况,无需压力传感器,经实验验证可大幅降低定位漂移,且计算量增加有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文标题:

Multi-IMU Proprioceptive Odometry for Legged Robots

论文作者:

Shuo Yang, Zixin Zhang, Benjamin Bokser, Zachary Manchester

github仓库:

https://github.com/ShuoYangRobotics/Multi-IMU-Proprioceptive-Odometry

1. 摘要

此论文提出了一种四足机器狗的多节点IMU本体感知定位方法。在传统的单一体IMU与机器狗关节编码器的基础上,论文作者添加了足部多节点IMU辅助估计。论文使用了扩展卡尔曼滤波的信息融合方法进行状态估计。使用额外的足部多节点IMU,系统可以估计机器狗足部触地的多种模式以及打滑情况,而不需要足部的压力传感器。所提出的方法在硬件平台上进行了验证,表明了该方法相较于传统方法确实可以大幅降低定位漂移,所增加的计算量也十分有限。

2. 引言

为了响应速度指令以及在高挑战场景下的路径规划,足式机器人需要精确的位姿与速度估计。在很多应用场景中,状态估计只能依赖机器人上装载的传感器,这是由于外部的GPS以及动捕系统常常会失效。

一个常见的足式机器人在线状态估计系统是本体感知。本体感知指的是用IMU以及机器人腿部的传感器,例如关节处的编码器以及足部的接触传感器,去估计机器人的体位姿与速度状态。然而,在传感器精度有限的足式机器人平台上,本体感知的定位漂移很严重,往往定位误差会超过10%。这是由于低成本传感器的噪声以及错误的足部触地检测。

在最近的研究中,其他例如视觉、激光雷达传感器被应用以提升机器人的状态估计精度。视觉、激光雷达传感器可以有效降低定位漂移,有的方法可以将定位漂移降低至 0.5%。然而,这些方法会带来很大的额外成本、系统复杂度的提升以及处理图像以及点云数据的计算资源消耗。在低成本的轻量足式机器人平台上,这些视觉、雷达传感器方法并不适用。

论文的目标就是开发一种本体感知方法,它能够在增添有限的硬件以及计算资源上实现高精度定位。为了实现这个目标,论文提出了多节点IMU本体感知里程计,这个方法使用了多节点IMU以及机器人的关节编码器去提升定位精度。相较于传统的视觉以及激光雷达传感器方法,IMU的成本更低,消耗的能量更低,体积较小。因此,在机器人足部添加额外节点IMU传感器,并不会对机器人的整体设计造成很大的影响。为了融合多节点IMU信息,论文将机器人足部的位置以及速度加入了扩展卡尔曼滤波框架中,并设计了相应的预测以及量测模型。更加重要的是,论文使用足部的IMU进行触地以及打滑检测,克服了在传统本体感知中足部触地时速度为0的不合理假设。

论文的状态估计方法在四足机器人平台上进行了验证,并且与多种已有的方法进行了比较。此论文的具体贡献点如下:

●提出了一种多节点IMU本体感知足式机器人里程计方法。

●提出了针对足部IMU节点的预测以及量测模型,能够检测触地以及打滑情况。

●在硬件平台了进行了消融实验验证,验证了此论文方法降低定位漂移的有效性。

3. 相关工作

足式机器人的状态估计问题最近收到了广泛关注。随着低成本四足机器人的商业化程度越来越高,对于在有限资源平台上进行可靠的感知定位方法不可或缺。

最早的足式机器人状态估计方法使用的是低成本消费级传感器,包括一个IMU、关节编码器以及足部触地传感器。由于这些方法的传感器全部包含在机器人体内,因此这些方法被称为本体感知里程计(PO)。一个简化版本的PO应用在了MIT Cheetah 3 robot上,此状态估计器只估计了身体速度以及足部的位置,因此该估计器是线性的。为了改善旋转估计,一种不变滤波的框架被剔除。尽管很多不同形式的滤波方法被提出,但是他们全部都使用了同样形式和状态的传感器。

对于本体感知的传感器,速度估计往往能够满足稳定的闭环控制需求,但是定位的漂移仍然会达到10%-15%。本体感知定位误差的主要来源就是机器人足部触地时的零速假设。然而,在实际情况中,在触地时,机器人的足部可能会打滑、变形或者滚动。但是,由于不是所有的足式机器人控制应用都需要高精度的位置估计,因此PO还是被广泛应用。

除了本体上的传感器,相机和激光雷达在SLAM领域中的性能效果很好。以外部视觉为基础的定位方法已经成功应用于足式机器人上:一种松耦合的视觉惯性及足式里程计被应用于波士顿动力的LS3机器人上,他们使用的是战术级IMU、高分辨率的相机以及基于FPGA的同步板,能够达到小于 1%的定位漂移。另外,一种基于因子图的融合IMU、编码器以及视觉观测的方法也被提出,而且在加入激光雷达传感器后,定位漂移可以被进一步降低至0.2%-0.4%。相机也被证明可以消除PO中的一些误差从而提升定位精度。但是,由于视觉和雷达会产生高带宽的数据,因此这些方法的计算复杂度天然非常高。

使用多节点IMU改善状态估计在机器人领域非常常见。例如在行人定位系统、AR/VR领域,在这些系统中,多节点的IMU往往装载在同一刚体上。最后,使用多节点IMU状态在人形机器人的不同关节部位上的传感器网络被提出,然后它所提出的目的是为了更好的关节速度估计,并不是为了位置估计。

4. 数学背景

这一小节介绍了论文中的一些数学符号表示。首先论文定义反对称操作符:
⌊ v ⌋ × = [ 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ] \begin{equation} \lfloor\mathbf{v}\rfloor^{\times}=\left[\begin{array}{ccc} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{array}\right] \end{equation} v×= 0v3v2v30v1v2v10

4.1 欧拉旋转角表示

论文中定义 θ = [ θ r ; θ p ; θ y ] \mathbf{\theta}=\left[{\theta}_r ; \theta_p ; \theta_y\right] θ=[θr;θp;θy]为欧拉角,分别为roll,pitch,yaw角。其对应的旋转矩阵定义为:

R ( θ ) = [ c p c y c y c p c r − c r c y c r c y + c r c y c p c p c y c r c y + c p c r c y c r c p c y − c y c r − c p c p c r c p c r ] R({\theta})=\left[\begin{array}{ccc}c_p c_y & c_y c_p c_r-c_r c_y & c_r c_y+c_r c_y c_p \\ c_p c_y & c_r c_y+c_p c_r c_y & c_r c_p c_y-c_y c_r \\ -c_p & c_p c_r & c_p c_r\end{array}\right] R(θ)= cpcycpcycpcycpcrcrcycrcy+cpcrcycpcrcrcy+crcycpcrcpcycycrcpcr 左右滑动查看完整公式

对于IMU所直接采集到的体系加速度和角速度记作,由此世界系下的加速度以及角速度可以表示为:
a w = R ( θ ) a b − g w \mathbf{a}_w=R({\theta}) \mathbf{a}_b-\mathbf{g}_w aw=R(θ)abgw
θ ˙ = [ θ ˙ r θ ˙ p θ ˙ y ] = Ω ( θ ) ω b = [ 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值