导读 近年来,大语言模型(LLMs)因其卓越的推理和理解能力在多个领域取得了显著成就,尤其是在分类、预测和优化等任务上。然而,传统算法(如凸优化和强化学习)常常面临可扩展性问题,特别是在高维度和复杂任务中,往往需要大量的计算和训练周期。相比之下,LLM通过在上下文中进行学习,无需额外的模型训练或参数微调,展现出了更高的灵活性和效率。LLM的这种优势使其在通信环境中具有广泛的应用潜力,尤其是在处理动态变化的网络环境时。 本文提出了一种新颖的优化方法,将LLM与强化学习技术(特别是双深度Q学习网络,DDQN)相结合,旨在联合优化车与基础设施(V2I)通信和自动驾驶(AD)策略。通过使用LLM来支持自动驾驶决策,可以提高交通流量,减少碰撞并确保道路安全;而使用DDQN优化V2I通信,可以最大化数据传输速率并减少频繁的基站切换。这种混合方法能够通过迭代优化,动态地调整AD和V2I的策略,最终实现更高的系统效率和更快的收敛速度。仿真实验结果表明,所提出的方法相较于传统的DDQN方法,具有更高的学习效率和优化性能。
©️【深蓝AI】编译
论⽂题目:Hybrid LLM-DDQN based Joint Optimization of V2I Communication and Autonomous Driving
论文作者:Zijiang Yan, Hao Zhou, Hina Tabassum, Xue Liu
论文地址:https://arxiv.org/abs/2410.08854
1.研究背景
大语言模型(LLMs)作为一种新兴的技术,近年来受到广泛关注,它能够处理多种下游任务,如分类、预测和优化。与传统算法(如凸优化和强化学习(RL))相比,LLM在处理复杂任务时展现了其独特的优势。传统的强化学习常面临大量迭代和采样效率低等问题,而凸优化则需要专门的数学变换来保证问题的凸性。与此相比,LLM启发的优化方法,特别是在上下文学习中的应用,展现了多方面的优势。首先,LLMs可以进行上下文学习,无需额外的模型训练或参数微调,从而节省大量的人力。其次,LLM的上下文优化可以通过调整提示语迅速扩展到新任务或目标,从而快速适应不同的通信环境。最后,LLMs能够为其优化决策提供合理的解释,帮助人类理解复杂的网络系统。凭借这些吸引人的特性,LLMs在优化问题的解决中有着巨大的潜力。
然而,预计6G网络将面临较短的信道相干时间(这是由于较高的传输频率和窄束波)以及对网络服务质量的严格要求,这意味着需要更快的响应时间和更高的智能水平。例如,车与基础设施(V2I)通信与车辆的驾驶行为密切相关,例如频繁的加速和减速可能会导致额外的切换(HOs),甚至可能导致V2I连接中断(如果没有及时处理)。因此,联合优化V2I通信和自动驾驶策略变得至关重要。这种V2I和AD的集成也与国际电信联盟(ITU)定义的6G使用场景相一致。
LLM支持的自动驾驶(AD)已经引起了大量研究关注,现有研究已经利用LLM的推理能力来实现决策支持,并推动了类人驾驶行为的实现。这些研究主要集中在使用LLM进行自动驾驶(AD)的应用,但将LLM