微软&悉尼大学|UniGraspTransformer:灵巧机器人抓取技术新突破!

摘要 在机器人研究领域,灵巧机器人抓取任务始终是极具挑战性的难题。不同形状、尺寸和物理属性的物体,以及多指灵巧手复杂的控制要求,都为机器人实现精准抓取带来了诸多阻碍。虽然已有研究取得了一定进展,但仍存在训练过程复杂、模型扩展性差以及抓取姿态单一等问题。在此背景下,UniGraspTransformer应运而生,它简化了训练流程,提升了模型性能与泛化能力,为灵巧机器人抓取技术带来了新的突破。

©️【深蓝AI】编译

论文标题:UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping

论文作者:Wenbo Wang Fangyun Wei* Lei Zhou Xi Chen Lin Luo Xiaohan Yi Yizhong Zhang Yaobo Liang Chang Xu Yan Lu Jiaolong Yang Baining Guo

论文地址:https://dexhand.github.io/UniGraspTransformer/

一、传统方法的困境与UniGraspTransformer的诞生

传统的基于夹爪的机器人抓取技术受夹爪结构限制,难以适应复杂形状物体。而灵巧抓取虽引入多指操作,却面临控制难题。以UniDexGrasp++为代表的方法,虽在灵巧抓取方面有所进步,但训练流程复杂,包含策略学习、几何感知聚类、课程学习和策略蒸馏等多个步骤,不仅增加了训练难度,还限制了模型的扩展性。当单一网络处理大量不同物体时,其性能会显著下降。

为解决这些问题,研究人员提出了UniGraspTransformer。它通过创新的训练方式,旨在打造一个能处理数千个物

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值