摘要 在机器人研究领域,灵巧机器人抓取任务始终是极具挑战性的难题。不同形状、尺寸和物理属性的物体,以及多指灵巧手复杂的控制要求,都为机器人实现精准抓取带来了诸多阻碍。虽然已有研究取得了一定进展,但仍存在训练过程复杂、模型扩展性差以及抓取姿态单一等问题。在此背景下,UniGraspTransformer应运而生,它简化了训练流程,提升了模型性能与泛化能力,为灵巧机器人抓取技术带来了新的突破。
©️【深蓝AI】编译
论文标题:UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping
论文作者:Wenbo Wang Fangyun Wei* Lei Zhou Xi Chen Lin Luo Xiaohan Yi Yizhong Zhang Yaobo Liang Chang Xu Yan Lu Jiaolong Yang Baining Guo
论文地址:https://dexhand.github.io/UniGraspTransformer/
一、传统方法的困境与UniGraspTransformer的诞生
传统的基于夹爪的机器人抓取技术受夹爪结构限制,难以适应复杂形状物体。而灵巧抓取虽引入多指操作,却面临控制难题。以UniDexGrasp++为代表的方法,虽在灵巧抓取方面有所进步,但训练流程复杂,包含策略学习、几何感知聚类、课程学习和策略蒸馏等多个步骤,不仅增加了训练难度,还限制了模型的扩展性。当单一网络处理大量不同物体时,其性能会显著下降。
为解决这些问题,研究人员提出了UniGraspTransformer。它通过创新的训练方式,旨在打造一个能处理数千个物