【RL】请问,一般来说“function”跟“mapping”的区别是什么呀?

Gemini2.0-Pro-Search

“Function”(函数)和 “mapping”(映射)这两个术语在数学中经常被使用,它们之间有联系,但也有细微的区别:

1. Function (函数):

  • 更具体的概念: 函数通常指的是从一个集合(定义域,domain)到另一个集合(值域,codomain)的一种特殊关系。这种关系满足以下性质:
    • 对于定义域中的每一个元素,都存在唯一的值域中的元素与之对应。(单值性)
  • 数值关系: 函数通常用来描述数值之间的关系,尤其是实数或复数之间的关系。例如:
    • f(x) = x² (从实数到实数的函数)
    • g(x, y) = x + y (从实数对到实数的函数)
  • 符号表示: 函数通常用符号 f, g, h 等表示,并用 f(x) 表示定义域中元素 x 对应的函数值。

2. Mapping (映射):

  • 更一般的概念: 映射是一个更广泛的概念,它可以指任意两个集合之间的关系,只要满足对于第一个集合(称为“源”,source)中的每个元素,都有第二个集合(称为“目标”,target)中的唯一元素与之对应。
  • 不限于数值: 映射的源和目标可以是任意类型的集合,不一定是数值集合。例如:
    • 可以将一个班级中的每个学生映射到他们的学号。
    • 可以将一个平面上的每个点映射到它的极坐标。
    • 可以将一个函数空间中的每个函数映射到它的导数(如果可导)。
  • 包含函数: 所有的函数都是映射,但映射不一定是函数。例如,上面提到的学生到学号的映射就不是通常意义下的函数。
  • 符号表示:映射可以用大写字母T,M等表示

总结区别:

特征Function (函数)Mapping (映射)
定义域/值域通常是数值集合 (实数、复数等)可以是任意类型的集合
关系强调数值之间的关系更一般的元素之间的对应关系
概念更具体更一般
包含关系所有的函数都是映射,但映射不一定是函数
使用语境微积分,实变函数,复变函数等线性代数, 泛函分析,拓扑学,离散数学等

一些微妙的用法:

  • 在某些数学分支(如泛函分析)中,“映射” 和 “算子” 经常互换使用,尤其是在涉及函数空间时。
  • 在一些文献中,“函数” 和 “映射” 几乎可以互换使用,只要上下文清楚即可。

一句话概括:

函数是特殊的映射,通常用于描述数值之间的关系;而映射是更一般的概念,可以描述任意集合之间的对应关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值