优化问题综述(四)有约束最优化算法

本文详细介绍了有约束条件的最优化问题,包括等式约束条件下的拉格朗日法及其几何证明,以及不等式约束条件下的KKT条件和对偶问题。内容涵盖了消元法、拉格朗日乘子法的数学描述和证明,以及不等式约束下的优化策略和KKT条件的应用。
摘要由CSDN通过智能技术生成

最优化问题的三种情况

  • 无约束条件:梯度下降法等(前面的文章已经有详细的描述)
  • 等式约束条件:解决方法是消元法或者拉格朗日法。
  • 不等式约束条件:一般用KKT(Karush Kuhn Tucker)条件对偶求解

等式约束条件下的优化算法

问题的数学描述: minxf(x),s.t.,hi(x)=0,i=1,2,..,I m i n x f ( x ) , s . t . , h i ( x ) = 0 , i = 1 , 2 , . . , I

消元法

根据约束条件消去一些未知数,使得问题变为无约束的优化问题,再用无约束条件的方法求解,但是有时候这样做很困难,甚至是做不到的。

拉格朗日法

拉格朗日函数为 F(x)=f(x)+iλihi(x) F ( x ) = f ( x ) + ∑ i λ i h i ( x ) ,对其求解偏导方程 Fx=0,Fλi=0 ∂ F ∂ x = 0 , ∂ F ∂ λ i = 0 ,如果有 I I 个约束条件,就应该有 I + 1 个方程。求出的方程组的解就可能是最优化值,将结果带回原方程验证,如果符合要求就可得到解。

拉格朗日乘子法的证明

这里写图片描述
从几何的角度看,如果找到了一个极值点,必然有极值点所在的等高面 f(x)=d f ( x ) = d 与约束曲面 hi(x)=0 h i ( x ) = 0 是相切的。否则,必然还可以沿着约束曲线继续走,找到一个更低的点,这意味着,在极值点:

f(x)=λh(x) ∇ f ( x ) = − λ ∇ h ( x )

因为约束曲面的交线的法线在各个约束曲面法线所组成的超平面上

f(x)=sumiλihi(x) ∇ f ( x ) = − s u m i λ i ∇ h i ( x )

因为拉格朗日函数为 F(x)=f(x)+iλihi(x) F ( x ) = f ( x ) + ∑ i λ i h i ( x ) ,那么有

xF(x)=xf(x)+sumiλixhi(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值