有约束的优化问题

无约束的优化问题

m i n f ( x )      , f ∈ C 2                                             1. 必 要 条 件 , 局 部 极 小 值 点 x ∗ 需 要 : ∇ f ( x ∗ ) = 0 , ∇ 2 f ( x ∗ ) ≥ 0 2. 充 分 条 件 , 局 部 极 小 值 点 x ∗ : ∇ f ( x ∗ ) = 0 , ∇ 2 f ( x ∗ ) > 0 minf(x) \ \ \ \ ,f\in C^2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 1.必要条件,局部极小值点x^*需要:\nabla f(x^*)=0,\nabla^2 f(x^*)\geq 0\\ 2.充分条件,局部极小值点x^*:\nabla f(x^*)=0,\nabla^2 f(x^*)> 0 minf(x)    ,fC2                                           1.x:f(x)=0,2f(x)02.x:f(x)=0,2f(x)>0
例 : f ( x ) = 1 2 ∣ ∣ A x − b ∣ ∣ 2    ,    r a n k ( A m , n ) = m ≤ n    , b ∈ R m 解 :                                                                                                           标 准 的 二 次 函 数 的 形 式 : f ( x ) = 1 2 ( A x − b ) t ( A x − b )                  = 1 2 ( x t A t − b t ) ( A x − b ) = 1 2 x t A t A x − ( A t b ) t x + 1 2 b t b 形 式 : 1 2 x t P x − ( Q ) t x + 1 2 B 则 : ∇ f ( x ∗ ) = A t A x − A t b , ∇ 2 f ( x ∗ ) = P = A t A r a n k ( A m , n ) = m     A t A > 0 ( 自 然 满 足 ) { m i n   f ( x ) = 1 2 ∣ ∣ A x − b ∣ ∣ 2 A t A x = A t b x ∗ = ( A t A ) − 1 A t b 例:f(x)=\frac{1}{2}||Ax-b||^2\ \ ,\ \ rank(A_{m,n})=m\leq n\ \ ,b\in R^m\\ 解:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 标准的二次函数的形式:f(x)=\frac{1}{2}(Ax-b)^t(Ax-b) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =\frac{1}{2}(x^tA^t-b^t)(Ax-b)=\frac{1}{2}x^tA^tAx-(A^tb)^t x+\frac12b^tb \\ 形式:\frac{1}{2}x^tPx-(Q)^t x+\frac12B \\ 则:\nabla f(x^*)=A^tAx-A^tb ,\nabla^2 f(x^*)=P=A^tA\\ rank(A_{m,n})=m \ \ \ A^tA> 0(自然满足)\\ \left\{\begin{array}{l}min \ f(x)=\frac{1}{2}||Ax-b||^2\\A^tAx=A^tb\end{array}\right. x^*=(A^tA)^{-1}A^tb f(x)=21Axb2  ,  rank(Am,n)=mn  ,bRm                                                                                                         f(x)=21(Axb)t(Axb)                =21(xtAtbt)(Axb)=21xtAtAx(Atb)tx+21btb21xtPx(Q)tx+21Bf(x)=AtAxAtb,2f(x)=P=AtArank(Am,n)=m   AtA>0(){min f(x)=21Axb2AtAx=Atbx=(AtA)1Atb

例 : m i n   f ( x ) = 1 2 ∣ ∣ A x − b ∣ ∣ 2 + λ 2 ∣ ∣ x ∣ ∣ 2     λ > 0 将 以 上 的 x 看 成 I x − 0 ∗ I , { ∇ f ( x ∗ ) = A t A x − A t b + λ x ∇ 2 f ( x ∗ ) = A t A + λ I , 其 中 ∇ 2 f ( x ∗ ) = A t A + λ I , x t ( ∇ 2 f ( x ∗ ) ) x = ∣ ∣ A x ∣ ∣ 2 + λ ∣ ∣ x ∣ ∣ 2 ≥ 0 , 因 为 x ≠ 0 , 所 以 其 严 格 大 于 0 例: min \ f(x)=\frac{1}{2}||Ax-b||^2+\frac{\lambda}{2}||x||^2 \ \ \ \lambda >0 \\ 将以上的x看成Ix-0*I,\left\{\begin{array}{l}\nabla f(x^*)=A^tAx-A^tb+\lambda x \\\nabla^2 f(x^*)=A^tA+\lambda I\end{array}\right.,\\ 其中\nabla^2 f(x^*)=A^tA+\lambda I,x^t(\nabla^2 f(x^*))x=||Ax||^2+\lambda||x||^2\geq0,因为x\neq 0,所以其严格大于0\\ min f(x)=21Axb2+2λx2   λ>0xIx0I,{f(x)=AtAxAtb+λx2f(x)=AtA+λI,2f(x)=AtA+λIxt(2f(x))x=Ax2+λx20,x=0,0
∇ f ( x ∗ ) = A t A x − A t b + λ x = 0 ⇒ ( A t A + λ ) x = A t b ⇒ x = ( A t A + λ ) − 1 A t b \nabla f(x^*)=A^tAx-A^tb+\lambda x =0 \Rightarrow (A^tA+\lambda) x =A^tb\Rightarrow x=(A^tA+\lambda) ^{-1}A^tb f(x)=AtAxAtb+λx=0(AtA+λ)x=Atbx=(AtA+λ)1Atb

有约束的优化问题

线性约束

{ m i n f ( x ) 线 性 约 束 A x = b      , f ∈ C 2     r a n k ( A m , n ) = m                                        对 于 线 性 方 程 组 A x = b 可 求 出 解 x = x ∗ + y { y : A y = 0 , 矩 阵 A 的 零 空 间 , d i m ( N ( A ) ) = n − m } x = x ∗ + y = x ∗ + B n , n − p y , y ∈ R n − p { m i n f ( x ) 线 性 约 束 A x = b ( 有 约 束 ) ⇒ m i n    f ( x ∗ + B y )   , y ∈ R n − p ( 无 约 束 ) 令 e = B y , f ( x ∗ + e ) = f ( x ∗ ) + ∇ f ( x ∗ ) t e + 1 2 ∇ 2 f ( x ∗ ) e + o ( ∣ ∣ e ∣ ∣ 2 ) , 带 入 B y 并 且 记 f ( x ∗ + B y ) = g ( y ) , ( f − x ∗ 极 小 , g − 0 极 小 ) 则 ∇ g ( 0 ) = B t ∇ f ( x ∗ ) , ∇ 2 g ( 0 ) = B t ∇ 2 f ( x ∗ ) B \left\{\begin{array}{l}minf(x)\\线性约束Ax=b\end{array}\right. \ \ \ \ ,f\in C^2\ \ \ rank(A_{m,n})=m \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 对于线性方程组Ax=b可求出解x=x^*+y\{y:Ay=0,矩阵A的零空间,dim(N(A))=n-m\}\\ x=x^*+y=x^*+B_{n,n-p}y,y\in R^{n-p}\\ \left\{\begin{array}{l}minf(x)\\线性约束Ax=b\end{array}\right. (有约束)\Rightarrow min\ \ f(x^*+By)\ ,y\in R^{n-p}(无约束)\\ 令e=By,f(x^*+e)=f(x^*)+\nabla f(x^*)^te+\frac12\nabla ^2 f(x^*)e+o(||e||^2),带入By\\ 并且记f(x^*+By)=g(y),(f-x^*极小,g-0极小)\\ 则\nabla g(0)=B^t\nabla f(x^*),\nabla ^2g(0)=B^t\nabla ^2f(x^*)B \\ {minf(x)线Ax=b    ,fC2   rank(Am,n)=m                                     线Ax=bx=x+y{yAy=0,A,dim(N(A))=nm}x=x+y=x+Bn,npy,yRnp{minf(x)线Ax=bmin  f(x+By) ,yRnpe=By,f(x+e)=f(x)+f(x)te+212f(x)e+o(e2),Byf(x+By)=g(y),(fxg0)g(0)=Btf(x),2g(0)=Bt2f(x)B
实 际 上 B t ∇ f ( x ∗ ) 是 等 价 于 拉 格 朗 日 乘 子 法 的 实际上B^t\nabla f(x^*)是等价于\href {https://blog.csdn.net/ResumeProject/article/details/109300992}{拉格朗日乘子法}的 Btf(x)
{ m i n f ( x ) 线 性 约 束 A x = b , x ∗ 局 部 极 小 ⇒ ∂ x L ( x ∗ , μ ) = 0 其 中 L ( x ∗ , μ ) = f ( x ) + μ t ( A x − b ) \left\{\begin{array}{l}minf(x)\\线性约束Ax=b\end{array}\right. ,x^*局部极小\Rightarrow\partial _x L(x^*,\mu)=0\\ 其中L(x^*,\mu )=f(x)+\mu ^t(Ax-b) {minf(x)线Ax=b,xxL(x,μ)=0L(x,μ)=f(x)+μt(Axb)
01h19min
例 : { m i n    ∑ 1 n x i l o g x i ∑ x i = 1 L ( x , μ ) = ∑ 1 n x i l o g x i + μ ( ∑ x i − 1 ) ∂ x L = 0 ⇒ ∂ x i L = 0 ⇒ 1 + l o g x i + μ = 0 x i = e − 1 − μ ( x i = 1 n ) 然 后 需 要 验 证 : B t ∇ 2 f ( x ) B > 0 , ∇ 2 f ( x ) = [ 1 x 1 1 x i 1 x n ] , B 满 秩 → B t ∇ 2 f ( x ) B > 0 例:\left\{\begin{array}{l}min \ \ \sum_1^n x_ilogx_i\\\sum x_i=1\end{array}\right.\\ L(x,\mu)=\sum_1^n x_ilogx_i +\mu(\sum x_i-1)\\ \partial _xL=0 \Rightarrow \partial _{x_i} L=0 \Rightarrow 1+log{x_i}+\mu=0 \\ x_i=e^{-1-\mu}(x_i=\frac1n)\\ 然后需要验证:B^t\nabla^2f(x)B>0,\nabla^2f(x)=\begin{bmatrix}\frac{1}{x_1}&&\\&\frac{1}{x_i}&\\&&\frac{1}{x_n}\end{bmatrix},B满秩\rightarrow B^t\nabla^2f(x)B>0 {min  1nxilogxixi=1L(x,μ)=1nxilogxi+μ(xi1)xL=0xiL=01+logxi+μ=0xi=e1μxi=n1Bt2f(x)B>0,2f(x)=x11xi1xn1,BBt2f(x)B>0
例 : { m i n ∣ ∣ y − x ∣ ∣ 2 a t x = b 常 值 a , y ∈ R n , b ∈ R 约 束 a t x = ∑ 1 n a i x i = b    是 n 维 空 间 中 的 一 个 n − 1 维 超 平 面 , 即 最 小 值 为 y 到 超 平 面 的 投 影 长 度 L ( x , μ ) = ∣ ∣ y − x ∣ ∣ 2 + μ ( a t x − b ) ∂ x L = 0 ⇒ ∂ x L = 2 ( x − y ) + μ a = 0 { 2 ( x − y ) + μ a = 0 a t x = b ⇒ 2 a t ( x − y ) = μ a t a , 2 b − 2 a t y = μ ∣ ∣ a ∣ ∣ 2 μ = 2 b − 2 a t y ∣ ∣ a ∣ ∣ 2 ( 常 量 , 可 解 出 x ) 例:\left\{\begin{array}{l}min ||y-x||^2\\a^tx=b\end{array}\right.\\ 常值a,y\in R^n,b\in R\\ 约束a^tx=\sum_1^na_ix_i=b \ \ 是n维空间中的一个n-1维超平面,即最小值为y到超平面的投影长度 \\ L(x,\mu)=||y-x||^2+\mu(a^tx-b)\\ \partial _xL=0 \Rightarrow \partial _{x} L=2(x-y)+\mu a=0 \\ \left\{\begin{array}{l}2(x-y)+\mu a=0\\a^tx=b\end{array}\right.\Rightarrow 2a^t(x-y)=\mu a^ta,2b-2a^ty=\mu ||a||^2\\ \mu=\frac{2b-2a^ty}{||a||^2}(常量,可解出x) {minyx2atx=ba,yRn,bRatx=1naixi=b  nn1yL(x,μ)=yx2+μ(atxb)xL=0xL=2(xy)+μa=0{2(xy)+μa=0atx=b2at(xy)=μata,2b2aty=μa2μ=a22b2atyx
例 : { m i n ∣ ∣ y − x ∣ ∣ 2 A x = b L ( x , μ ) = ∣ ∣ y − x ∣ ∣ 2 + μ t ( A x − b ) 例:\left\{\begin{array}{l}min ||y-x||^2\\Ax=b\end{array}\right.\\ L(x,\mu)=||y-x||^2+\mu^t(Ax-b)\\ {minyx2Ax=bL(x,μ)=yx2+μt(Axb)

非线性约束

例 : { m i n ∣ ∣ y − x ∣ ∣ 2 h i ( x ) = 0 , i ∈ [ 1 , p ] , x ∈ R n 解 空 间 局 部 参 数 化 g : ( − 1 , 1 ) → R n , g ( 0 ) = x ∗ , R ( g ) = D ( f ( x ) 的 定 义 域 ) h i ( g ) = 0 x ∗ 局 部 极 小 ⇒ 0 为 f ∗ g 局 部 极 小 ⇒ ( f ∗ g ) ′ ( 0 ) = 0 , ( f ∗ g ) ′ ′ ( 0 ) ≥ 0 又 h i ∗ g = 0 , ( h i ∗ g ) ′ ( 0 ) = 0 , ( h i ∗ g ) ′ ′ ( 0 ) = 0 以 及 g 的 任 意 性 ⇒ 解 x ∗ 的 必 要 条 件 例:\left\{\begin{array}{l}min ||y-x||^2\\h_i(x)=0,i\in [1,p],x\in R^n\end{array}\right.\\ 解空间局部参数化\\ g:(-1,1)\rightarrow R^n,g(0)=x^*,R(g)=D(f(x)的定义域)\\ h_i(g)=0\\ x^*局部极小 \Rightarrow 0为f*g局部极小\\ \Rightarrow (f*g)'(0)=0,(f*g)''(0)\geq0\\ 又h_i*g=0,(h_i*g)'(0)=0,(h_i*g)''(0)=0\\ 以及g的任意性\Rightarrow 解x^*的必要条件\\ {minyx2hi(x)=0,i[1,p],xRng:(1,1)Rn,g(0)=x,R(g)=Df(x)hi(g)=0x0fg(fg)(0)=0,(fg)(0)0hig=0(hig)(0)=0,(hig)(0)=0gx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值