求 z = f ( x , y ) z=f(x,y) z=f(x,y) 在 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 条件下的最值
- 我们知道,若在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 取得最值,在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 的某个邻域内
φ
(
x
,
y
)
=
0
\varphi(x,y)=0
φ(x,y)=0 可以确定一个连续且具有连续导数的函数
y
=
ψ
(
x
)
y=\psi (x)
y=ψ(x),于是
m
a
x
m
i
z
e
{
z
=
f
(
x
,
ψ
(
x
)
)
}
maxmize\{z=f(x,\psi(x))\}
maxmize{z=f(x,ψ(x))}
那么有
d z d x ∣ x = x 0 = f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) d y d x ∣ x = x 0 = 0 \frac{\text{d}z}{\text{d}x}\Big|_{x=x_0}=f_x(x_0,y_0)+f_y(x_0,y_0)\frac{\text{d}y}{\text{d}x}\Big|_{x=x_0}=0 dxdz∣∣∣x=x0=fx(x0,y0)+fy(x0,y0)dxdy∣∣∣x=x0=0
d y d x = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) \frac{\text{d}y}{\text{d}x}=-\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)} dxdy=−φy(x0,y0)φx(x0,y0)
f x ( x 0 , y 0 ) − f y ( x 0 , y 0 ) φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)-f_y(x_0,y_0)\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)}=0 fx(x0,y0)−fy(x0,y0)φy(x0,y0)φx(x0,y0)=0
-
设 f y ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = − λ \frac{f_y(x_0,y_0)}{\varphi_y(x_0,y_0)}=-\lambda φy(x0,y0)fy(x0,y0)=−λ,那么上述条件可以转化为
f ( x ) = { f x ( x 0 , y 0 ) + λ φ x ( x 0 , y 0 ) = 0 f y ( x 0 , y 0 ) + λ φ y ( x 0 , y 0 ) = 0 φ ( x 0 , y 0 ) = 0 f(x)=\left\{ \begin{aligned} f_x(x_0,y_0)+\lambda\varphi_x(x_0,y_0) = 0 \\ f_y(x_0,y_0)+\lambda\varphi_y(x_0,y_0)=0 \\ \varphi(x_0,y_0)=0 \end{aligned} \right. f(x)=⎩⎪⎨⎪⎧fx(x0,y0)+λφx(x0,y0)=0fy(x0,y0)+λφy(x0,y0)=0φ(x0,y0)=0
若引进辅助函数 L ( x , y ) = f ( x , y ) + λ φ ( x , y ) L(x,y)=f(x,y)+\lambda\varphi(x,y) L(x,y)=f(x,y)+λφ(x,y),那么 L x ( x 0 , y 0 ) = 0 , L y ( x 0 , y 0 ) = 0 L_x(x_0,y_0)=0,L_y(x_0,y_0)=0 Lx(x0,y0)=0,Ly(x0,y0)=0 -
几何意义: − f x ( x 0 , y 0 ) f y ( x 0 , y 0 ) = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = d y d x ∣ x = x 0 -\frac{f_x(x_0,y_0)}{f_y(x_0,y_0)}=-\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)}=\frac{\text{d}y}{\text{d}x}\Big|_{x=x_0} −fy(x0,y0)fx(x0,y0)=−φy(x0,y0)φx(x0,y0)=dxdy∣∣∣x=x0
即梯度与切线垂直,两函数相切