拉格朗日乘数法

z = f ( x , y ) z=f(x,y) z=f(x,y) φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 条件下的最值

  • 我们知道,若在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 取得最值,在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 的某个邻域内 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 可以确定一个连续且具有连续导数的函数 y = ψ ( x ) y=\psi (x) y=ψ(x),于是 m a x m i z e { z = f ( x , ψ ( x ) ) } maxmize\{z=f(x,\psi(x))\} maxmize{z=f(x,ψ(x))}
    那么有
    d z d x ∣ x = x 0 = f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) d y d x ∣ x = x 0 = 0 \frac{\text{d}z}{\text{d}x}\Big|_{x=x_0}=f_x(x_0,y_0)+f_y(x_0,y_0)\frac{\text{d}y}{\text{d}x}\Big|_{x=x_0}=0 dxdzx=x0=fx(x0,y0)+fy(x0,y0)dxdyx=x0=0

d y d x = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) \frac{\text{d}y}{\text{d}x}=-\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)} dxdy=φy(x0,y0)φx(x0,y0)

f x ( x 0 , y 0 ) − f y ( x 0 , y 0 ) φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)-f_y(x_0,y_0)\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)}=0 fx(x0,y0)fy(x0,y0)φy(x0,y0)φx(x0,y0)=0

  • f y ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = − λ \frac{f_y(x_0,y_0)}{\varphi_y(x_0,y_0)}=-\lambda φy(x0,y0)fy(x0,y0)=λ,那么上述条件可以转化为
    f ( x ) = { f x ( x 0 , y 0 ) + λ φ x ( x 0 , y 0 ) = 0 f y ( x 0 , y 0 ) + λ φ y ( x 0 , y 0 ) = 0 φ ( x 0 , y 0 ) = 0 f(x)=\left\{ \begin{aligned} f_x(x_0,y_0)+\lambda\varphi_x(x_0,y_0) = 0 \\ f_y(x_0,y_0)+\lambda\varphi_y(x_0,y_0)=0 \\ \varphi(x_0,y_0)=0 \end{aligned} \right. f(x)=fx(x0,y0)+λφx(x0,y0)=0fy(x0,y0)+λφy(x0,y0)=0φ(x0,y0)=0
    若引进辅助函数 L ( x , y ) = f ( x , y ) + λ φ ( x , y ) L(x,y)=f(x,y)+\lambda\varphi(x,y) L(x,y)=f(x,y)+λφ(x,y),那么 L x ( x 0 , y 0 ) = 0 , L y ( x 0 , y 0 ) = 0 L_x(x_0,y_0)=0,L_y(x_0,y_0)=0 Lx(x0,y0)=0,Ly(x0,y0)=0

  • 几何意义: − f x ( x 0 , y 0 ) f y ( x 0 , y 0 ) = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = d y d x ∣ x = x 0 -\frac{f_x(x_0,y_0)}{f_y(x_0,y_0)}=-\frac{\varphi_x(x_0,y_0)}{\varphi_y(x_0,y_0)}=\frac{\text{d}y}{\text{d}x}\Big|_{x=x_0} fy(x0,y0)fx(x0,y0)=φy(x0,y0)φx(x0,y0)=dxdyx=x0
    即梯度与切线垂直,两函数相切

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值