Python——点云数据增强

点云数据增强,顾名思义,是一种数据增强方式,也常常作为一种检测模型鲁棒性的方法。总结一下有以下几种方式:旋转,加噪声,降采样,不同程度的遮挡等

  1. 降采样
    在论文中常使用最远点采样和随机采样,功能实现简单,具体体现在PointNet等代码中只是一个超参数。
  2. 高斯噪音
  3. 延坐标旋转
    高斯噪音和旋转的代码参考博客:点云 数据增强(Data Augmentation):方法与python代码
  4. 增加离群点
    通常对实际场景中的点需要进行离群点滤波,用来训练模型,但是,增加离群点反而可以测试模型的鲁棒性。
发布了37 篇原创文章 · 获赞 9 · 访问量 7031
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览