AI大模型量化技术介绍(三)非对称量化、范围映射与裁剪、校准

一、非对称量化

与对称量化不同的是,非对称量化不是围绕零对称的。它将浮点范围中的最小值(β)和最大值(α)映射到量化范围的最小值和最大值。

我们将要探讨的方法称为零点量化。

看到0的位置如何发生了变化吗?这就是为什么它被称为_非对称量化_。在范围[-7.59, 10.8]内,最小/最大值到0的距离是不同的。

由于其位置的偏移,我们必须为INT8范围计算零点,才能执行线性映射。像之前一样也必须计算一个_比例因子_(s)。

由于需要计算INT8范围内的_零点_(z)来移动权重,这个过程略显复杂。

如之前所述,公式如下:

为了将从INT8量化的数据反量化回FP32,需要使用之前计算的_比例因子_(s)和_零点_(z)。

当把对称和非对称量化放在一起时,可以很快看到方法之间的区别:

可以明显的看到对称量子化的零中心特性与非对称量子化的偏移量。

二、范围映射与裁剪

在之前的例子中,探讨了如何将给定向量中的值范围映射到较低位的表示。尽管这允许将向量值的完整范围映射出来,但它带来了一个主要的缺点,即_异常值_。

假设有一个向量,其值如下:

其中一个值比其他所有值都大得多,可以被认为是一个异常值。如果我们要映射这个向量的完整范围,所有小的值都会被映射到相同的较低位表示,并且失去它们的区分因素:

这就是我们之前使用的absmax方法。如果我们不应用裁剪,非对称量化也会发生同样的行为。

所以我们可以选择_裁剪_某些值。裁剪涉及设置原始值的不同动态范围,使得所有异常值获得相同的值。

在下面的例子中,手动将动态范围设置为[-5, 5],那么所有超出该范围的值将被映射到-127或127,无论它们的实际值如何:

其主要优点是显著降低了“非异常值”的量化误差。但是会导致_离群值_的量化误差增大。

三、校准

上面展示了一种选择[-5, 5]任意范围的简单方法。选择这个范围的过程被称为_校准_,其目的是找到一个范围,包括尽可能多的值,同时最小化量化误差。

执行这一校准步骤对所有类型的参数来说并不相同。

1. 权重(和偏置)

我们可以将LLM的权重和偏置视为_静态_值,因为在运行模型之前就已知这些值。例如,Llama 3的~20GB文件主要由其权重和偏置组成。

由于偏置的数量(百万级)远少于权重(十亿级),偏置通常保持较高的精度(如INT16),量化的主要工作集中在权重上。

对于已知且固定的权重,可选择范围的校准技术包括:

  • 手动选择输入范围的_百分位数_

  • 优化原始权重和量化权重之间的_均方误差_(MSE)

  • 最小化原始值和量化值之间的_熵_(KL散度)

选择一个百分位数会导致我们之前看到的类似裁剪行为。

2. 激活

在LLM中持续更新的输入通常被称为“激活”。

这些值被称为激活,因为它们通常会通过某些激活函数,如sigmoid或relu。与权重不同,激活会随着在推理过程中输入模型的每个数据而变化,这使得准确量化它们变得具有挑战性。由于这些值在每个隐藏层之后更新,所以只有在输入数据通过模型时才能知道它们在推理过程中的状态。

有两种方法用于校准权重和激活的量化方法:

  • 训练后量化(PTQ)——在训练之后进行量化
  • 量化感知训练(QAT)——在训练/微调期间进行量化

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值