一文彻底搞懂多模态:多模态推理

多模态推理涉及至少两种不同的感知模态,最常见的是视觉和语言。这两种模态的信息可以是图片和文本、视频和语音等。多模态推理的目标是从不同模态的信息中获取更全面、更准确的理解和知识,以支持各种任务,包括视觉问答、视觉常识推理、视觉语言导航等。

接下来分两部分:知识图谱推理、多模态推理任务,一起来深入了解多模态应用:多模态推理。

一、知识图谱推理

1、什么是知识图谱(Knowledge Graph)

知识图谱是一种结构化的知识库,它以图的形式表示和存储现实世界中的实体、概念及其相互关系。这些实体可以是具体的人、地点、事物,也可以是抽象的概念或思想。

  • 节点:代表现实世界中的实体(如人、地点、事物、概念等),每个实体通常由一个唯一的标识符表示。
  • 边:表示这些实体之间的关系。

知识图谱的基本组成单位是“实体—关系—实体”三元组,以及实体及其相关属性—值对,实体间通过关系相互联结,构成网状的知识结构。

KG = (E,R,T),KG表示知识图谱、E表示实体集合、R表示关系集合、T表示知识三元组集合。

2、什么是知识图谱推理(Multimodal Reasoning with Knowledge Graph)

知识图谱推理是指基于知识图谱中的事实和关系,通过逻辑、规则、统计或机器学习等方法,从已知的信息中推断出新的信息或关系的过程。

知识图谱推理的目标是从有限的事实中推导出更多的知识,填补知识图谱中的空白或增强图谱的表达能力。

(一)基于规则学习

通过挖掘图谱中的逻辑规则,利用规则匹配和推理来预测新的实体和关系。例如:重写逻辑(Rewriting Logic),将规则表示为重写规则,并通过递归应用重写规则来进行推理。

(二)基于路径排序:

利用图谱中实体间的路径特征进行排序学习,通过评估路径的可信度来推断实体间的关系。例如:路径排序算法(Path-Ranking Algorithm,PRA),采用随机行走和基于重启的推理机制,执行多个有界深度优先搜索过程来寻找关系路径。

(三)基于表示学习:

将实体和关系嵌入到低维向量空间,通过向量运算和相似性度量进行推理。例如:翻译距离模型(如TransE、TransH、TransR等),这些模型为知识图谱中的每个实体和关系学习一个向量表示,并通过向量间的运算关系来推断新的实体和关系。

(四)基于神经网络学习

利用神经网络模型捕捉图谱中的结构信息,通过神经网络的前向传播进行推理预测。例如:基于图神经网络(GNN)的推理方法,如基于注意力机制的图卷积神经网络(Graph Attention Network,GAT),通过对实体之间的相似度进行加权,来推断实体之间的关系。

二、多模态推理任务

什么是多模态推理任务(Multi-Modal Reasoning Task)

多模态推理任务是指利用多种感知模态的信息进行综合分析和判断的过程。

(一)视觉问答(Visual Question Answering,VQA)

视觉问答指的是给机器一张图片和一个开放式的自然语言问题,要求机器输出自然语言答案。答案可以是短语、单词、(yes/no)或从几个可能的答案中选择正确答案。

  • VQA是一个典型的多模态问题,融合了计算机视觉(CV)与自然语言处理(NLP)的技术,计算机需要同时学会理解图像和文字。

  • 为了回答某些复杂问题,计算机还需要了解常识,并基于常识进行推理(common-sense resoning)。

(二)视觉常识推理(Visual Commonsense Reasoning,VCR)

视觉常识推理需要在理解文本的基础上结合图片信息,基于常识进行推理。给定一张图片、图中一系列有标签的bounding box,VCR实际上包含两个子任务:{Q->A}根据问题选择答案;{QA->R}根据问题和答案进行推理,解释为什么选择该答案。

  • VCR数据集由大量的“图片-问答”对组成,主要考察模型对跨模态的语义理解和常识推理能力。

  • 预训练任务可能包括将BERT经典的MLM和NSP预训练任务扩展到多模态场景等。

(三)视觉语言导航(Vision Language Navigation)

视觉语言导航是一种技术,它结合了计算机视觉、自然语言处理和自主学习三大核心技术,使智能体能够跟随自然语言指令进行导航。

  • 智能体不仅能够理解指令,还能理解指令与视角中可以看见的图像信息。
  • 智能体需要在环境中对自身所处状态进行调整和修复,最终做出对应的动作,以达到目标位置。


三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>好的,用户想了解如何构建和实现多模态知识图谱,特别是方法和技术栈。我需要先回忆一下相关知识,并结合提供的引用内容来组织回答。 首先,根据引用[1]提到的知识图谱构建流程,可能需要从数据获取、数据融合、存储等方面入手。但用户的问题是多模态的,所以需要处理多种类型的数据,比如文本、图像、音频等。引用[2]提到多模态AI技术和多模态知识图谱,说明需要整合不同模态的数据。 接下来,我需要分步骤说明构建方法。第一步应该是多模态数据采集,需要涵盖不同来源的数据,比如文本、图像、视频等。然后是多模态知识抽取,这里可能需要使用NLP技术处理文本,计算机视觉处理图像,语音识别处理音频等。 然后是知识融合,不同模态的知识可能需要对齐,比如图像中的物体和文本中的描述对应起来。这里可能需要实体对齐和跨模态关联技术。存储方面,图数据库如Neo4j适合存储关系,但多模态数据可能还需要其他存储方式,比如向量数据库处理嵌入。 技术栈部分,需要涵盖数据处理的各种工具,比如TensorFlow、PyTorch用于深度学习模型,图数据库,以及查询语言如Cypher。另外,引用[2]提到的一站式解决方案可能需要集成平台,比如Apache Kafka处理数据流。 可能还需要考虑多模态预训练模型,如CLIP或ALBEF,这些模型能处理不同模态的数据。同时,数据清洗和标注也是关键步骤,尤其是非结构化数据的处理。 用户可能没有明确提到的挑战包括模态间的语义鸿沟、数据异构性,以及如何有效进行跨模态检索。这些问题应该在回答中适当提及,并提供解决方法,比如使用联合嵌入空间。 最后,生成的相关问题需要围绕技术选型、挑战、应用场景和评估指标,这些能帮助用户进一步探索。</think>### 多模态知识图谱的构建方法与技术栈 #### 1. **构建流程概述** 多模态知识图谱的构建需整合文本、图像、音频、视频等异构数据,核心流程包括: - **多模态数据采集**:从结构化数据库(如MySQL)、半结构化数据(JSON/XML)及非结构化数据(图片、视频)中获取信息[^1]。 - **多模态知识抽取**: - **文本**:使用NLP技术(如BERT、SPACY)抽取实体、关系、事件。 - **图像/视频**:通过CV模型(如ResNet、YOLO)提取物体、场景、动作特征。 - **音频**:基于语音识别(如Whisper)和声纹分析提取语义信息。 - **跨模态知识对齐**:通过嵌入表示(如CLIP模型)将不同模态的实体映射到统一语义空间,解决模态间语义鸿沟[^2]。 - **知识融合与存储**:使用图数据库(Neo4j、Amazon Neptune)存储实体关系,向量数据库(Milvus、FAISS)管理多模态特征向量。 #### 2. **关键技术栈** | **模块** | **技术工具/框架** | **功能说明** | |-------------------|-------------------------------------|----------------------------------------------------------------------------| | **数据处理** | Apache NiFi、Scrapy | 多模态数据爬取与清洗 | | **知识抽取** | HuggingFace Transformers、OpenCV | 文本实体识别、图像目标检测、语音转文本 | | **跨模态对齐** | CLIP、ALBEF | 建立文本-图像联合嵌入空间 | | **存储与查询** | Neo4j + Elasticsearch | 图结构存储实体关系,全文检索支持多模态内容 | | **计算框架** | Apache Spark、Dask | 分布式处理大规模多模态数据 | #### 3. **实现难点与优化** - **语义一致性**:通过多模态预训练模型(如ViLBERT)增强跨模态语义理解。 - **实时性要求**:采用流处理技术(Apache Kafka + Flink)实现动态知识更新。 - **示例代码(知识抽取)**: ```python # 使用HuggingFace进行文本实体抽取 from transformers import pipeline ner_model = pipeline("ner", model="dslim/bert-base-NER") text_entities = ner_model("苹果公司于1976年由史蒂夫·乔布斯创立。") # 使用OpenCV进行图像特征提取 import cv2 image = cv2.imread("product.jpg") detector = cv2.CascadeClassifier("haarcascade_frontalface.xml") faces = detector.detectMultiScale(image) ``` #### 4. **应用场景** - **智能客服**:结合用户文字描述与上传的图片,精准定位问题(如电商退换货场景)。 - **医疗诊断**:整合医学影像(CT/MRI)与病历文本,辅助生成诊断报告。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值