一、MCP vs Function Calling vs A2A 关系
1、MCP↔Function Calling 关系:设计理念与应用场景的差异
尽管 MCP 和 Function Calling 都旨在促进大语言模型(LLM)与外部工具和服务的交互,但它们在设计理念和应用场景上存在显著差异,尤其是在可扩展性方面。
1)Function Calling 的局限性
Function Calling 由于缺乏统一标准,不同 LLM 需要各自的函数定义格式。如果有 M 个不同 LLM 应用和 N 个不同工具/服务,理论上可能需要实现 M×N 次重复的对接工作。此外,Function Calling 本身并不直接支持多步调用组合,大模型只能一次调用一个函数,获取结果后如果需调用下一个函数,需要由应用逻辑将结果馈入大模型下一轮对话,再触发下一个函数调用。虽然在原理上可以实现函数输出作为输入形成链条,但这一切需要开发者在应用层精心编排,大模型自身缺乏对跨调用流程的全局观。
2)MCP 的扩展性优势
MCP 的扩展性则通过统一的接口标准,将复杂的 M(个模型)×N(个外部工具对接)问题转化为 M+N 的问题。工具创建者只需为每个工具/系统实现一次 MCP Server,应用开发者只需为每个应用实现一次 MCP Client,各自遵循通用协议即可协同工作,扩展新功能的边际成本大幅降低。
2、MCP↔A2A 关系:能力互补
那么,为什么在有了 MCP 之后,还需要 A2A 来协作不同 Agent 呢?对比 MCP 与 A2A,可以发现两者的关系更多是一种能力的互补:MCP 让 Agent 能够使用工具,而 A2A 让 Agent 能够与其他 Agent 协作。一个解决“做什么”,一个解决“与谁合作”。
背后的逻辑就像上班,有的同事(Agent)擅长研发汽车发动机,有的同事(Agent)擅长组装。所有人通过一个流水线串联共同完成一个项目,一定比一个同事(Agent)独自研发汽车,然后再组装并营销的效率更高。
3、A2A↔Function Calling 关系:能力协同
A2A 可以支持 Agent 之间的通信,而每个 Agent 可以通过 Function Calling 调用外部工具。
这种结合可以实现复杂的任务分配和协作,提升系统的整体性能。
4、未来趋势:技术融合
长期来看,我们可能会看到这三大通信机制(Function Calling、MCP、A2A)逐渐融合的趋势。不过,目前 OpenAI 和 Anthropic 尚未支持 A2A。这可能是因为,尽管大家在技术布道时都有自己的理念,但最终如何选择取决于商业决策。然而,从长期来看,技术融合之路势在必行。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】