Model Context Protocol (MCP) 与 传统 Function Calling 到底什么区别,怎么选?

一、核心区别对比表

图片

二、典型应用场景

  1. 优先选择 MCP 的场景
- **跨平台工具集成**  
  例如:让 Claude Desktop 同时访问本地文件 + Jira API + 私有数据库

- **敏感数据隔离**  
  通过 MCP Server 代理访问医疗/金融等受监管数据,避免直接暴露给 LLM

- **动态上下文管理**  
  需要根据对话状态自动切换不同数据源(如切换 GitHub 仓库上下文)

- **多 LLM 供应商切换**  
  统一资源接口,无需为每个 LLM 重写工具调用逻辑
  1. 优先选择 Function Calling 的场景
- **快速原型开发**  
  简单天气查询/计算器等单一功能扩展

- **封闭环境应用**  
  工具逻辑完全内置于当前应用(如内部知识库问答)

- **轻量级交互**  
  无需复杂权限控制或资源发现的场景

- **供应商锁定场景**  
  深度依赖特定 LLM(如 GPT-4)的专有功能

三、技术实现对比

图片

四、演进趋势预测

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于服务器上下文配置或问题 #### 1. Redis 远程连接问题 当使用 Jedis 客户端远程连接到 Redis 服务时,如果遇到连接错误,通常是因为 Redis 的 `protected-mode` 或绑定 IP 地址设置不当。为了允许特定主机访问 Redis 服务器,需修改其配置文件中的 `bind` 参数,添加目标主机的 IP 地址[^1]。 此外,Redis 默认启用了 `protected-mode yes`,这意味着只有本地客户端能够无密码访问它。如果需要关闭此模式以启用更宽松的安全策略,则可将该项设为 `no`。然而需要注意的是,这种做法可能带来安全隐患,因此建议仅用于测试环境,并始终配合强密码验证机制来增强安全性。 #### 2. SonarQube 授权分析权限不足的问题 SonarQube 报错提示未授权分析某个项目的情况可能是由于用户角色分配不正确引起的。即使项目的类型被定义为 project ,但如果执行扫描操作的具体账户缺乏足够的权限级别也可能引发此类警告消息[^2] 。确认当前登录用户的权限范围是否涵盖了对该具体工程的操作许可是非常重要的一步骤;另外还需核查Token的有效性适用范围。 #### 3. Kubernetes API Server X509 Certificate 到期后的恢复措施 对于因 kubeadm etcd 中使用的 SSL/TLS 认证材料到期而导致无法正常运行的服务集群而言,采取及时有效的应对方案至关重要。一种可行的方法涉及手动备份现有证书及相关联配置文件后再生成新的认证文档集替代旧版失效件[^3]。另一种更为简便的方式则是利用官方提供的自动化工具脚本来完成整个过程——即通过编写专门设计好的Shell或者Python等语言编写的程序实现一键更新全部必要组件内的公私钥对及其签名信息等功能。 最后值得注意的一点是在未来预防类似事件再次发生方面做出改进计划也很有必要考虑进去比如定期检查各个节点上存储的关键数据有效期状态以及适时调整相应维护周期安排等等举措均有助于提高整体系统的稳定可靠性水平。 #### 4. MCP 协议简介其应用场景探讨 提到模型上下文协议 (Model Context Protocol),这是一种基于 Function Calling 构建起来的技术框架结构形式下的扩展解决方案之一。它的主要作用在于简化外部调用内部复杂逻辑流程的同时还能很好地保障两者之间传递过来的信息内容不会轻易泄露出去从而达到既便捷又安全的目的效果[^4]。例如当我们想要检索某张表格里边包含的所有产品详情记录时候就可以借助这样的方式快速获取所需资源列表而无需担心隐私泄漏风险等问题存在其中。 ```python import mcp_client def fetch_product_info(): client = mcp_client.connect() result = client.query("SELECT * FROM products;") return result.fetchall() if __name__ == "__main__": data = fetch_product_info() print(data) ``` 上述代码片段展示了如何运用 MCP 来查询数据库中 product 表的相关条目实例演示。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值