Object Tracking:CenterTrack

本文详细介绍了目标跟踪技术,特别是CenterTrack算法。从概念上区分了密集跟踪和稀疏跟踪,并探讨了相关数据集如MOT2017和KITTI。Stacked Hourglass Networks作为backbone在网络中起到重要作用,而CenterNet在2019年的表现超越了其他主流检测模型。CenterTrack通过结合CenterNet和时间轴点跟踪实现Anchor-Free的目标追踪。
摘要由CSDN通过智能技术生成

:目录

一. 概念

1. 分类

 2. 数据集

3. 上游技术点

二. 第二课

1. Dataset 详解

2. Stacked Hourglass Networks (backbone)

3. CenterNet(2019)

4. CenterTrack

三. 第三课.

1. CenterTrack

2. MOT17


一. 概念

1. 分类

  1. 密集跟踪:连续帧时间域连续跟踪(伪跟踪)
  2. 稀疏跟踪:由 t0 时刻真实位置预测 t0+ dt 时刻位置,只处理预测部分像素(计算量小,不如密集跟踪精准)

 2. 数据集

  1.  MOT2017

3. 上游技术点

  1. CornerNet
  2. Anchor free
  3. Corner Pooling

  1. CenterNet
  2. CenterPooling

二. 第二课

1. Dataset 详解

  • 经典数据集1:MOT : The Multiple Object Tracking benchmark!

版本&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值