计数原理
1.计数原理
1.1 加法原理、乘法原理
1.2 排列与排列数
1.3 组合与组合数
PS:图标说明
⛲️:陈jian
👵:鑫quan
👩:张紫chao
💂:MBA大shi
😽:海mian
🙆:环qiu
加法原理、乘法原理
⛲️
一、考点讲解
-
分类计数原理(加法原理)
(1)定义
如果完成一件事有n类办法,只要选择其中一类办法中的任何一种方法,就可以完成这件事。若第一类办法中有 m 1 m_1 m1种不同的方法,第二类办法中有 m 2 m_2 m2种不同的方法…第n类办法中有 m n m_n mn种不同的办法,那么完成这件事共用 N = m 1 + m 2 + . . . + m n N=m_1+m_2+...+m_n N=m1+m2+...+mn种不同的方法。
(2)理解
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 -
分步计数原理(乘法原理)
(1)定义
如果完成一件事,必须依次连续地完成n个步骤,这件事才能完成。若完成第一个步骤有 m 1 m_1 m1种不同的方法,完成第二个步骤有 m 2 m_2 m2种不同的方法……完成第n个步骤有 m n m_n mn种不同的方法,那么完成这件事共有 N = m 1 ∗ m 2 ∗ . . . . . . ∗ m n N= m_1*m_2*......*m_n N=m1∗m2∗......∗mn种不同的方法。
(2)理解
运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 -
两个原理的区别及联系
(1)抓住两个基本原理的区别,不要用混,不同类的方法(其中每一种方法都能把事情从头至尾做完)数之间做加法,不同步的方法(其中每一种方法都只能完成这件事的一部分)数之间做乘法。
(2)在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则。
如:从若干件产品中抽出几件产品来检验,把抽出的产品中至多有2件次品的抽法分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有一件次品,这样的分类显然漏掉了抽出的产品中无次品的情况。
又如:把能被2、被3或被6整除的数分为三类:第一类是能被⒉整除的数,第二类是能被3整除的数,第三类是能被6整除的数,其中第一类、第二类都和第三类有重复,这样的分类是不正确的。
(3)在运用乘法原理时要注意,每个步骤都做完,这件事也必须完成。
内容 | 加法原理 | 乘法原理 |
---|---|---|
本质 | 每类独立完成任务 | 缺少任何一步,都无法完成 |
特征 | 分成几类就有几项相加 | 分成几步就有几项相乘 |
符号 | 加号 | 乘号 |
应用 | 出现不确定或者互相干扰时,要分类 | 出现需要若干过程或环节才能完成时,要分步 |
并存 | 当分类与分步同时出现,一定要先宏观分类,再微观分步 |
二、考试解读
- 两个基本原理看似简单,容易理解,但是实际应用中很难区分,所以要掌握其本质。
- 难点在于分类,如何分类和怎样分类是考生的薄弱点,要加强训练。
- 当两个原理在一个题目中同时出现时,要能够清晰分类和分步。
- 考试频率级别:中。
三、命题方向
- 加法原理
思路:遇到分类求解时,采用加法原理。 - 乘法原理
思路:遇到分步求解时,采用乘法原理。 - 加法乘法并存
思路:当分类与分步同时出现,一定要先宏观分类,再微观分步。
👵
👩
💂
😽
🙆
排列与排列数
⛲️
👵
👩
- 排列组合的基本步骤(固定解题体系)
先取后排:即先取出元素,后排列元素,切勿边取边排.
逐次进行:按照一定的顺序逐次进行排列组合.
实验结束:整个实验过程必须完成. - 排列组合的基本考官思路
(1)捆绑法.
(2)插空法.
(3)特殊/全能元素问题.
(4)隔板法.
(5)对号与不对号问题.
(6)分房模型.
(7)局部元素定序法.
(8)局部元素相同法.
(9)分堆与分配问题.
(10)成双问题.
(11)循环赛问题. - 思路
思路一:捆绑,插空法
捆绑法主要解决的问题:若干个元素相邻的问题.
插空法主要解决的问题:若干个元素不相邻的问题.
对于捆绑法:先排有特殊要求的元素.
对于插空法:先排没有特殊要求的元素(注意不相邻元素是否相同)
思路二:特殊/全能元素的考察
全能元素在题目中考官通常会描述为一个元素具有两种属性,既会A也会B(全能人)
特殊元素在题目中考官通常会描述为对某一元素有特殊要求(例如:A一定要……,A 一定不能……)
对于这种固定出题模式的全能(特殊)元素问题,我们的解题思路也很固定:
对全能(特殊)元素要/不要,或者要几个进行分类讨论即可.
思路三:分堆与分配问题
出题模式:被分配元素数量大于受分配元素,并且要求受分配元素至少分得一个(不为空)。
注意事项:如果分堆时,若出现相同数量的堆数时,要除以相同堆数的阶乘,以消除排序,如果出现分配问题时,注意先分堆后分配。
对于分配问题出现时,如果让我们分配考官一定会有非常明确的自然语言的表达,切忌脑补。
思路四:隔板法
隔板法的要求条件相当严格,必须具备以下3个条件,缺一不可.
A.所要分的物品必须完全相同.
B.所要分的物品必须全部分完,不允许有剩余.
C.参与分物品的每个成员至少分到一个,分配不允许空.
结论:将n个完全相同的元素分给m个对象 ( m ≤ n ) (m ≤n) (m≤n)如果分配对象非空.
即每人至少分得一个则有 C n − 1 m − 1 C_{n-1}^{m-1} Cn−1m−1种方法,如果分配对象允许空,则有 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m−1m−1种方法.
隔板法的出题模式:出现完全相同的自然语言的表达或者默认为完全相同的元素(例如证书,奖项,座位等等)
隔板法的出题思路:
1)常规思路.
2)允许为空.
3)至少多个.
4)不小于编号数.
思路五:对号与不对号问题
元素对号入座只有一种方法,元素不对号请大家记住答案
两个不对号——1种方法
三个不对号——2种方法
四个不对号——9种方法
五个不对号——44种方法
注意:所有的对号问题全部转化为不对号问题进行求解,考虑不对号元素的同时,还要考虑对号问题。
思路六:分房模型
分房模型的出题模式:可以理解为一种分布计数原理(乘法原理),在分配时没有任何的条件限制的要求时,就是分房模型的出题思路
分房模型的解题思路:自问自答(当作分步计数原理进行分析和解决)
思路七:单一元素和多个元索的插空法
思路八:局部元素定序(相同)问题
局部元素定序问题:在对元素进行排列时,出现部分元素需要按照一定的顺序进行排列时,则要除以这部分元素数量的阶乘,以消除顺序,有多少就除多少.
局部元素相同问题:在对元素进行排列时,出现部分元素相同时,则要除以相同元素数量的阶乘,以消除顺序,有多少就除多少.
备注:可以将局部元素定序问题和局部元素相同问题看作一个思路.
思路九:成双(配对)问题
配对问题的解题思路:配对问题主要以鞋子或者手套来作为命题对象,其核心在于成双不成双,对于成双问题,直接选取整双即可,对于不成双问题,要先取成双的,然后从每双种取单只即可.
特别注意:要注意单位的统一(“双”和“只”的区分)
思路十:循环赛问题
结论:n名选手进行单循环比赛,一共需要比赛 C n 2 C_n^2 Cn2场,其中每个选手比赛 n − 1 n-1 n−1场.
n名选手进行双循环比赛,一共需要比赛 C n 2 ∗ 2 C_n^2*2 Cn2∗2场,其中每个选手比赛 2 ( n − 1 ) 2(n-1) 2(n−1)场.
思路十一:有约束条件的排序问题
其出题模式和特殊元素的出题模式类似:某元素一定要/不要.
区别:对于特殊元素问题而言,该元素可选可不选.
对于有约束条件的排序问题而言,该元素必须选.
对于此类问题,我们通过画框,利用简单的分步计数原理解决即可.
思路十二:取数问题
1.此类题目的出题模式非常固定:
出现一个式子的乘方形式,然后问某一项的系数.
2.解题方法:对于此类问题,我们拒绝用二项式定理,按照简单的排列组合的思路进行解题即可,并且此类问题多要使用分类讨论的思想.
3.注意事项:此类问题在历年真题中只考过一次,所以同学不用把它当成一个重要考点进行备考.
💂
😽
🙆
组合与组合数
⛲️
👵
👩
💂
😽
🙆