ShuffleNet v1算法详解

论文地址:https://arxiv.org/pdf/1707.01083.pdf
Face++的一篇关于降低深度网络计算量的论文

什么是group convlution 群卷积 ?

我们假设上一层的输出feature map有N个,即通道数channel=N,也就是说上一层有N个卷积核。再假设群卷积的群数目M。那么该群卷积层的操作就是,先将channel分成M份。每一个group对应N/M个channel,与之独立连接。然后各个group卷积完成后将输出叠在一起(concatenate),作为这一层的输出channel。

该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet的bottleneck单元

Channel shuffle

     

  1. 图a做group convolution的方法:对于N个feature map M个filter(卷积核),group组数为g,则N,M都被分为g个组,第一个group中M/g个fliter的每一个filter都和第一个group中N/g个feature map做卷积得到结果,接着第二个,第三个….                   总结:feature map和卷积核都为相同的分组,然后对应组相卷积得到结果,这样做的目的就是可以大幅减少计算量如果有多   个卷积层都有group操作如图(a),这样就会产生边界效应:某个输出channel仅仅来自输入channel的一小部分,只能学习到一小部分的特征,于是提出了channel shuffle;简言之就是:如图a,最终的output输出只和输入的一小部分有关
  2. Channel shuffle图b,在进行Gconv之前,对其输入的feature map做了一个分配:将每个group分成几个subgroup,然后将group的每个subgroup作为GConv2的一个group的输入下一个Gconv的输入,如图c所示。

Pointwise group convolution (卷积核是1*1的卷积)

在ResNet中主要对3*3的卷积做group操作,但是在shuffleNet中,作者对1*1卷积做grounp的操作

文中计算了这三个unit的FLOPS:(我把计算式子写开,更容易理解)

其中c为输入通道数,m为输出通道数,g为group分组数

a为(2cm + 9m*m) = (c+3*3*m+c)*m

b为(2cm + 9m*m/g)= (c/g+3*3*m/g+c/g)*m

  1. 图a是ResNet中的bottleneck unit,不过将原来的3*3 Conv改成3*3 DW Conv
  2. 图b 是添加了group convolution 和channel shuffle
  3. bottleneck中添加average pooling,设置DWConv的步长为2,最后采用contact操作按channel合并代替ADD操作

实验结果

Table1是网络结构,设置不同的分组数的复杂度,Table2计算了不同ShuffleNet复杂度下的错误率。1X, 0.5X, 0,25X表示将网络的filter缩小s*s倍

Table2标题括号中的好像是有错误,应该为更小的s表现更大的分类错误率

此外作者还做了如下的比较,寻找最优的分组数g

不同模型的复杂度和错误率的比较

最后作者得出一个经验值,使用groung=3时可以得到一个准确率和运行时间的一个平衡。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值