分段线性学习率extend_with_piecewise_linear_lr

6个派生优化器的简单介绍及其实现 - 科学空间|Scientific Spaces

# 派生为带分段线性学习率的优化器。
# 其中name参数可选,但最好填入,以区分不同的派生优化器。
AdamLR = extend_with_piecewise_linear_lr(Adam, name='AdamLR')

extend_with_piecewise_linear_lr的定义如下 

@export_to_cust
新的优化器类,加入分段线性学习率
    """
    class NewOptimizer(BaseOptimizer):
        """带有分段线性学习率的优化器
        其中schedule是形如{1000: 1, 2000: 0.1}的字典,
        表示0~1000步内学习率线性地从零增加到100%,然后
        1000~2000步内线性地降到10%,2000步以后保持10%
        """
        @insert_arguments(lr_schedule={0: 1})
        def __init__(self, *args, **kwargs):
            super(NewOptimizer, self).__init__(*args, **kwargs)
            self.lr_schedule = {int(i): j for i, j in self.lr_schedule.items()}

        def _decayed_lr(self, var_dtype):
            lr_multiplier = piecewise_linear(self.iterations, self.lr_schedule)
            lr_t = super(NewOptimizer, self)._decayed_lr(var_dtype)
            return lr_t * K.cast(lr_multiplier, var_dtype)

        def get_config(self):
            config = {
                'lr_schedule': self.lr_schedule,
            }
            base_config = super(NewOptimizer, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))

    return NewOptimizer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值