一、核心区别
表 1 Ollama与vLLM框架核心区别表
对比维度 | Ollama | vLLM |
核心定位 | 轻量级本地化工具,适合个人开发者和小规模实验 | 生产级推理框架,专注高并发、低延迟的企业级场景 |
硬件要求 | 支持 CPU 和 GPU,低显存占用(默认使用量化模型) | 必须依赖 NVIDIA GPU,显存占用高 |
模型支持 | 内置预训练模型库(支持1700+模型),自动下载量化版本(int4为主) | 需手动下载原始模型文件(如 HuggingFace 格式),支持更广泛模型 |
部署难度 | 一键安装,开箱即用,无需编程基础 | 需配置 Python 环境、CUDA 驱动,依赖技术经验 |
性能特性 | 单次推理速度快,但并发处理能力弱 | 高吞吐量,支持动态批处理和千级并发请求 |
资源管理 | 灵活调整资源占用,空闲时自动释放显存 | 显存占用固定,需预留资源应对峰值负载 |
二、显存占用
1.模型量化技术
Ollama 默认下载的模型为 int4 量化版本(如 Qwen2.5-14B 模型权重从 9GB 压缩至 4.7GB),显著减少显存需求26。而 vLLM 通常使用原始 FP16/BF16 模型,显存占用更高(例如 Qwen2.5-14B 在 vLLM 中需要 39GB 显存,而 Ollama 仅需 11GB)。当然,vLLM也可以使用int4 量化的模型。
2.优化的显存管理
Ollama 基于 llama.cpp 的底层优化(如分块加载和混合精度计算),结合轻量级框架设计,进一步降低显存压力。vLLM 则通过 PagedAttention 技术提升并发效率,但需固定分配显存块,导致资源占用较高。
三、 性能和速度
1.单次请求
Ollama 因量化模型和轻量级架构,单次推理速度更快(例如 Qwen2.5-7B 平均响应时间 3 秒左右,vLLM 约 3.5-4.3 秒)。
2.高并发场景
vLLM 凭借动态批处理和并行计算,吞吐量显著优于 Ollama(如 vLLM 的并发请求处理速度可达 Ollama 的 24 倍)。
3.模型质量损失
量化可能导致模型精度下降(如生成内容质量或指令遵循能力降低),部分用户实测发现 Ollama 的生成效果弱于 vLLM 的原始模型。
4.扩展性限制
Ollama 主要面向单机本地化场景,多 GPU 并行支持有限;vLLM 支持分布式部署和多卡扩展,适合大规模服务。
四、并行策略和实现方式
1.vLLM 的实现
张量并行(Tensor Parallelism),为每个 GPU 创建独立的进程来管理模型分片,因此会看到不同的进程号。
2.Ollama 的实现
单进程多线程的方式,主进程通过 CUDA 上下文管理多个 GPU,所以所有 GPU 共享同一个进程号。
3.总结
vLLM: 多进程方式,每个 GPU 一个进程
Ollama: 单进程方式,通过线程管理多 GPU
4.两种方式各有优劣:
- vLLM 的多进程方式:
- 更好的隔离性
- 进程间通信开销较大
- 更容易进行错误恢复
- Ollama 的单进程方式:
- 更低的系统开销
- 更简单的实现
- 共享内存更容易
- 错误可能影响整个系统
对比维度 | Ollama | vLLM |
并行策略 | 张量并行 | |
实现方式 | 单进程方式,通过线程管理多 GPU | 多进程方式,每个 GPU 一个进程 |
优劣 | 更低的系统开销 更简单的实现 共享内存更容易 错误可能影响整个系统 | 更好的隔离性 进程间通信开销较大 更容易进行错误恢复 |
五、 适用场景
1.选择 Ollama
- 个人开发者快速验证模型效果、低配置硬件(如仅有 16GB 内存的笔记本电脑);
- 需要快速交互式对话或原型开发。
2.选择 vLLM
- 企业级 API 服务、高并发批量推理(如智能客服、文档处理);
- 需要高精度模型输出或定制化参数调整
六、参考
[1] https://zhuanlan.zhihu.com/p/23658493890