前言
近年来,大语言模型(LLM)的应用日益广泛,而高效的部署方案至关重要。Ollama和vLLM作为两种流行的LLM部署工具,各有优劣。本文将深入比较Ollama和vLLM的部署方式,帮助选择最合适的方案。
Ollama:简单易用的LLM部署工具
Ollama以其简洁的安装和易于使用的特性而闻名。其官方文档清晰易懂,即使是新手也能快速上手。Ollama支持多种LLM模型,并提供便捷的命令行界面进行管理和运行。其核心优势在于:
-
简单安装: Ollama的安装过程非常简单,只需几条命令即可完成,无需复杂的配置。
-
易于使用: Ollama提供友好的用户界面和命令行工具,方便用户管理和运行LLM模型。
-
跨平台支持: Ollama支持macOS、Windows和Linux系统,具有良好的跨平台兼容性。
-
内存占用少: 相较于其他一些部署方案,Ollama对内存的占用相对较少,这对于资源受限的设备来说非常友好。
然而,Ollama也存在一些不足之处:
-
并发限制: Ollama的并发处理能力相对有限,需要根据实际需求调整最大并发数。
-
国内网络环境: 由于服务器在国外,国内用户在下载和使用过程中可能会遇到网络速度慢的问题。
Ollama安装示例(Linux):
curl -fsSL https://ollama.com/install.sh | sh
Ollama运行示例:
ollama run qwen2.5:32b-instruct
如果遇到网络问题的解决办法,可以修改****下载源
打开 ollama_install.sh,找到以下两个下载地址:
https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}
https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}
我们要将这两个地址替换成 GitHub 的下载链接。但直接使用 GitHub 可能依旧缓慢,因此我们推荐使用 GitHub 文件加速服务。
使用以下脚本来修改下载源:
#!/bin/bash
# 文件路径
FILE="ollama_install.sh"
# 修改 URL
sed -i 's|https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}|https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64|g' $FILE
sed -i 's|https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}|https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64-rocm.tgz|g' $FILE
最终,把下载地址改为:
https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64
https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64-rocm.tgz
vLLM:高性能LLM推理引擎
vLLM是一个专注于高性能LLM推理的工具。它能够有效地利用多核CPU和GPU资源,显著提升LLM的推理速度。vLLM的主要优势在于:
-
高推理速度: vLLM在推理速度方面表现出色,能够快速生成LLM的输出。
-
资源利用率高: vLLM能够充分利用多核CPU和GPU资源,提升资源利用率。
-
灵活配置: vLLM允许用户根据实际需求灵活配置参数,例如模型路径、端口号等。
但是,vLLM的上手难度相对较高:
-
配置复杂: vLLM的配置相对复杂,需要用户具备一定的技术基础。
-
显存占用更大: 相比于ollama的显存占用,vLLM占用的更大。
vLLM安装示例:
pip install vllm
vLLM运行示例:
vllm serve --host 0.0.0.0 --port 8080 --model-path /path/to/model
总结
Ollama和vLLM各有千秋,选择哪种方案取决于具体需求。如果需要一个简单易用、快速部署的LLM解决方案,并且对推理速度要求不高,那么Ollama是不错的选择。如果追求高性能的LLM推理,并且具备一定的技术基础,那么vLLM更适合。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
