前言
近年来,大语言模型(LLM)的应用日益广泛,而高效的部署方案至关重要。Ollama和vLLM作为两种流行的LLM部署工具,各有优劣。本文将深入比较Ollama和vLLM的部署方式,帮助选择最合适的方案。
Ollama:简单易用的LLM部署工具
Ollama以其简洁的安装和易于使用的特性而闻名。其官方文档清晰易懂,即使是新手也能快速上手。Ollama支持多种LLM模型,并提供便捷的命令行界面进行管理和运行。其核心优势在于:
- 简单安装: Ollama的安装过程非常简单,只需几条命令即可完成,无需复杂的配置。
- 易于使用: Ollama提供友好的用户界面和命令行工具,方便用户管理和运行LLM模型。
- 跨平台支持: Ollama支持macOS、Windows和Linux系统,具有良好的跨平台兼容性。
- 内存占用少: 相较于其他一些部署方案,Ollama对内存的占用相对较少,这对于资源受限的设备来说非常友好。
然而,Ollama也存在一些不足之处:
- 并发限制: Ollama的并发处理能力相对有限,需要根据实际需求调整最大并发数。
- 国内网络环境: 由于服务器在国外,国内用户在下载和使用过程中可能会遇到网络速度慢的问题。
Ollama安装示例(Linux):
curl -fsSL https://ollama.com/install.sh | sh
Ollama运行示例:
ollama run qwen2.5:32b-instruct
如果遇到网络问题的解决办法,可以修改****下载源
打开 ollama_install.sh,找到以下两个下载地址:
https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}
https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}
我们要将这两个地址替换成 GitHub 的下载链接。但直接使用 GitHub 可能依旧缓慢,因此我们推荐使用 GitHub 文件加速服务。
使用以下脚本来修改下载源:
#!/bin/bash
# 文件路径
FILE="ollama_install.sh"
# 修改 URL
sed -i 's|https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}|https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64|g' $FILE
sed -i 's|https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}|https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64-rocm.tgz|g' $FILE
最终,把下载地址改为:
https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64
https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.3.4/ollama-linux-amd64-rocm.tgz
vLLM:高性能LLM推理引擎
vLLM是一个专注于高性能LLM推理的工具。它能够有效地利用多核CPU和GPU资源,显著提升LLM的推理速度。vLLM的主要优势在于:
- 高推理速度: vLLM在推理速度方面表现出色,能够快速生成LLM的输出。
- 资源利用率高: vLLM能够充分利用多核CPU和GPU资源,提升资源利用率。
- 灵活配置: vLLM允许用户根据实际需求灵活配置参数,例如模型路径、端口号等。
但是,vLLM的上手难度相对较高:
- 配置复杂: vLLM的配置相对复杂,需要用户具备一定的技术基础。
- 显存占用更大: 相比于ollama的显存占用,vLLM占用的更大。
vLLM安装示例:
pip install vllm
vLLM运行示例:
vllm serve --host 0.0.0.0 --port 8080 --model-path /path/to/model
总结
Ollama和vLLM各有千秋,选择哪种方案取决于具体需求。如果需要一个简单易用、快速部署的LLM解决方案,并且对推理速度要求不高,那么Ollama是不错的选择。如果追求高性能的LLM推理,并且具备一定的技术基础,那么vLLM更适合。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓