常见的数据指标&定位其异常变化时原因

提示:数据分析学习笔记


前言

提示:本文的主要内容:
1、常见数据指标的含义。
2、如何分析这些指标发生异常的原因。


一、常见指标

提示:遇到没见过的指标就更新

  • 视频类指标
    PV(Page View,浏览量):是指在一个统计周期内,浏览页面的数之和。
    UV(Unique Visitor,访客数):是指在一个统计周期内,访问网站的人数之和。
    VV(Video View,播放数):是指在一个统计周期内,视频被打开的次数之和。
    CV(Content Views,内容播放数):是指在一个统计周期内,视频被打开,且视频正片内容(除广告)被成功播放的次数之和。
    tip:由于用户在广告播放流失,因此通常CV<VV。
  • 用户类指标
    新增用户、活跃度、留存率
    访问时长,用户在页面或者APP停留时长。
  • 电商类指标
    成交总额(GMV),一段时间内的总成交额。
    成交数量,一段时间内的交易数量总和。
    ROI(Return On Investment ):投资回报率。
  • 游戏类指标
    AU(Active Users):活跃用户
    PU(Payment Users):付费用户
    APA(Active Payment):活跃付费用户
    ARPU(Average Revenue Per User):平均每用户收入,由总收入/AU计算得到。
    ARPPU(Average Revenue Per Users):平均每付费用户收入,由总收入/APA计算得出。
    PUR(Pay Users Rate):付费比率,由APA/AU计算得到。
    LTV(Life Time Value):生命周期价值,每一个用户从首次登录游戏到最后一次登陆游戏所创造的总收入。

二、指标异常分析

注:提供思考的通用模板,具体回答结合实际场景中指标分析。

1、核实数据真实性

  • 数据上报准确性,是否是线上埋点数据落库过程出现问题导致异常现象。
  • 指标统计口径一致性,确认需求方计算指标的口径有无问题。
  • 相似的情况之前有没有发生过,判断是否是周期性导致的异常变化。
  • 确定当前变化幅度为异常变化。

2、归因分析

① 维度拆分,根据积累经验对异常指标进行维度拆分,例如DAU出现异常,通常细分用户、渠道等等维度下钻分析。
② 与产品和开发确认此次case与产品改动是否有关。
③ 与运营沟通是否有新运营活动,推广导致用户流失。
④ 外部环境因素,是否受竞品所影响,与国家政策、社会经济环境是否有关。
注:复合指标发生异常变化,先拆分符合指标的组成成分,对每个成分进行上述分析。比如GMV = 访客数 * 用户转化率 * 订单均价,GMV发生异常变化时,对访客数、转化率、订单均价分别进行异常归因分析。


总结

本文主要用于分析一般指标异常变化如何分析的套路,即首先确认指标真的异常,之后拆分指标下钻分析到一定程度,结合内外环境因素明确原因,最后由得到的分析原因,给到业务侧相应可落地的指导建议。实际工作中,对于具体数据指标,根据实际场景进行分析原因更为妥当。
扩展:上述对指标异动的分析只停留在定性上,若要更准确分析各问题对于指标异动的贡献度,定量的分析原因可以参考链接: 贡献度定量归因之法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值