提示:数据分析学习笔记
前言
提示:本文的主要内容:
1、常见数据指标的含义。
2、如何分析这些指标发生异常的原因。
一、常见指标
提示:遇到没见过的指标就更新
- 视频类指标
PV(Page View,浏览量):是指在一个统计周期内,浏览页面的数之和。
UV(Unique Visitor,访客数):是指在一个统计周期内,访问网站的人数之和。
VV(Video View,播放数):是指在一个统计周期内,视频被打开的次数之和。
CV(Content Views,内容播放数):是指在一个统计周期内,视频被打开,且视频正片内容(除广告)被成功播放的次数之和。
tip:由于用户在广告播放流失,因此通常CV<VV。 - 用户类指标
新增用户、活跃度、留存率
访问时长,用户在页面或者APP停留时长。 - 电商类指标
成交总额(GMV),一段时间内的总成交额。
成交数量,一段时间内的交易数量总和。
ROI(Return On Investment ):投资回报率。 - 游戏类指标
AU(Active Users):活跃用户
PU(Payment Users):付费用户
APA(Active Payment):活跃付费用户
ARPU(Average Revenue Per User):平均每用户收入,由总收入/AU计算得到。
ARPPU(Average Revenue Per Users):平均每付费用户收入,由总收入/APA计算得出。
PUR(Pay Users Rate):付费比率,由APA/AU计算得到。
LTV(Life Time Value):生命周期价值,每一个用户从首次登录游戏到最后一次登陆游戏所创造的总收入。
二、指标异常分析
注:提供思考的通用模板,具体回答结合实际场景中指标分析。
1、核实数据真实性
- 数据上报准确性,是否是线上埋点数据落库过程出现问题导致异常现象。
- 指标统计口径一致性,确认需求方计算指标的口径有无问题。
- 相似的情况之前有没有发生过,判断是否是周期性导致的异常变化。
- 确定当前变化幅度为异常变化。
2、归因分析
① 维度拆分,根据积累经验对异常指标进行维度拆分,例如DAU出现异常,通常细分用户、渠道等等维度下钻分析。
② 与产品和开发确认此次case与产品改动是否有关。
③ 与运营沟通是否有新运营活动,推广导致用户流失。
④ 外部环境因素,是否受竞品所影响,与国家政策、社会经济环境是否有关。
注:复合指标发生异常变化,先拆分符合指标的组成成分,对每个成分进行上述分析。比如GMV = 访客数 * 用户转化率 * 订单均价,GMV发生异常变化时,对访客数、转化率、订单均价分别进行异常归因分析。
总结
本文主要用于分析一般指标异常变化如何分析的套路,即首先确认指标真的异常,之后拆分指标下钻分析到一定程度,结合内外环境因素明确原因,最后由得到的分析原因,给到业务侧相应可落地的指导建议。实际工作中,对于具体数据指标,根据实际场景进行分析原因更为妥当。
扩展:上述对指标异动的分析只停留在定性上,若要更准确分析各问题对于指标异动的贡献度,定量的分析原因可以参考链接: 贡献度定量归因之法