【计算机视觉】Github开源项目:用于火灾检测的 Yolov5

本文介绍了一个GitHub上的开源项目,利用Yolov5框架进行火灾检测。项目包括训练和推理过程,展示了在有限迭代后的良好检测效果,并探讨了可能的改进方向,如增加负样本数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一个GitHub上使用Yolov5进行火灾检测的开源项目。链接:https://github.com/spacewalk01/Yolov5-Fire-Detection

火灾检测任务旨在识别视频中的火灾或火焰,并在其周围放置一个边界框。这个 repo 包含一个关于如何使用 Yolov5 构建火灾探测模型的演示。

 

设置

克隆此 repo 并使用以下脚本安装yolov5。然后下载Fire-Dataset并将其放入datasets文件夹中。该数据集包含来自

<think>嗯,用户需要做一个关于YOLOv5火灾检测模型的毕业设计。首先,我得理清楚整个项目的流程,确保用户能按步骤完成。用户可能对目标检测YOLOv5不太熟悉,所以需要先简单介绍一下YOLOv5的优势,比如速度快、精度高,适合实时检测,这对火灾检测来说很重要。 接下来是数据集的准备。用户可能不知道哪里找火灾相关的数据集,我需要推荐一些公开的数据集,比如Kaggle或者Google Dataset Search,同时提醒注意数据多样性,包括不同场景、火焰大小和光照条件。数据标注部分,得解释清楚要用LabelImg这样的工具,生成YOLO格式的txt文件,每个标注对应类别和边界框。这里可能需要详细说明YOLO的标注格式,避免用户出错。 然后是模型训练。用户可能对YOLOv5的环境配置不熟悉,得一步步指导安装PyTorchYOLOv5的依赖库。数据集的目录结构也很重要,要说明train、val、test文件夹以及yaml文件的配置,特别是类别数和路径设置。训练参数部分,要提到epochs、batch size和输入分辨率,可能还需要解释超参数调优的方法,比如使用遗传算法或者手动调整。 模型评估部分,需要介绍常用的指标,比如mAP、精确率、召回率,还有混淆矩阵和PR曲线。用户可能不太清楚这些指标的含义,可以简要解释一下,帮助他们理解模型的表现。可视化检测结果也很重要,能直观展示模型的效果,这里可能需要指导如何用YOLOv5提供的脚本来生成预测图。 优化方向方面,用户可能想进一步提升模型性能,可以建议数据增强、调整模型结构,或者使用预训练权重。部署部分,需要考虑实际应用场景,比如嵌入式设备或服务器,推荐相应的工具如TensorRT或ONNX,还有开发GUI界面或API接口,这些对毕业设计的展示有帮助。 最后,论文撰写和答辩准备是关键。需要提醒用户论文结构要清晰,包括引言、相关工作、方法、实验、结果和结论。实验部分要详细,对比不同模型的效果。答辩时要突出创新点和实际应用价值,可能还要准备技术细节的应对。 整个过程中,需要确保用户能够按步骤操作,避免常见错误,比如数据标注格式错误、环境配置问题。同时,考虑到是毕业设计,可能需要强调项目的完整性和创新性,帮助用户顺利通过答辩。</think>好的!基于YOLOv5火灾检测模型是一个结合计算机视觉深度学习的实用项目,非常适合作为毕业设计。以下是分步实现方案: --- ### **一、项目背景与目标** 1. **背景** 火灾检测对公共安全至关重要,传统传感器存在覆盖范围有限等问题,基于视觉的检测可弥补不足。 2. **目标** 实现一个能够实时检测火焰、烟雾的模型,输出检测框和置信度,适用于监控场景。 --- ### **二、技术选型:为什么选择YOLOv5?** - **优势**:轻量化、速度快(适合实时检测)、精度高、开源易部署 - **改进空间**:可针对小火焰优化检测头,或压缩模型适配边缘设备 --- ### **三、实现步骤** #### **1. 数据集准备** - **数据来源**: - 公开数据集:Kaggle(如“Fire Detection Dataset”)、Google Dataset Search - 自建数据集:从视频监控中截取火灾场景,注意标注多样性(不同场景、火焰大小、光照条件) - **标注要求**: - 使用LabelImg工具标注火焰/烟雾的边界框,生成YOLO格式的`.txt`文件 - 标注文件示例: ``` # 类别ID 中心点x 中心点y 宽度 高度(均归一化到[0,1]) 0 0.45 0.62 0.3 0.4 ``` #### **2. 模型训练** - **环境配置**: ```bash # 安装PyTorchYOLOv5 pip install torch torchvision git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt ``` - **数据集配置**: - 目录结构: ``` datasets/ ├── train/ │ ├── images/ │ └── labels/ ├── val/ │ ├── images/ │ └── labels/ └── fire.yaml # 数据集配置文件 ``` - `fire.yaml`内容示例: ```yaml train: ../datasets/train/images val: ../datasets/val/images nc: 2 # 类别数(火焰、烟雾) names: ['fire', 'smoke'] ``` - **启动训练**: ```bash python train.py --img 640 --batch 16 --epochs 100 --data fire.yaml --weights yolov5s.pt ``` - **关键参数**: - `--img 640`: 输入图像分辨率 - `--batch 16`: 根据GPU显存调整 - `--weights yolov5s.pt`: 从小模型开始训练(可选yolov5m/l/x) #### **3. 模型评估** - **指标计算**: ```bash python val.py --weights runs/train/exp/weights/best.pt --data fire.yaml ``` - 核心指标:mAP@0.5、Precision、Recall - **可视化检测**: ```bash python detect.py --weights best.pt --source test_image.jpg ``` #### **4. 优化方向** - **数据增强**:添加遮挡、模糊、亮度扰动(修改`data.yaml`中的`augment`参数) - **模型压缩**:使用`--prune`参数剪枝或转换为ONNX/TensorRT格式 - **改进检测头**:在`models/yolov5s.yaml`中增加小目标检测层 --- ### **四、部署与应用** 1. **硬件适配** - 服务器:使用Flask/Django开发API接口 - 边缘设备:通过TensorRT加速(参考YOLOv5官方导出教程) 2. **可视化界面** ```python # 示例:用OpenCV显示实时检测 import cv2 from yolov5 import detect cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() results = detect.run(weights='best.pt', source=frame) cv2.imshow('Fire Detection', results.render()[0]) if cv2.waitKey(1) == 27: break ``` --- ### **五、论文撰写建议** 1. **结构框架** - 引言 → 相关工作 → YOLOv5改进方法 → 实验设计 → 结果分析 → 应用展示 2. **创新点挖掘** - 数据增强策略优化 - 针对火焰颜色特征的预处理方法(如HSV空间滤波) - 轻量化部署方案 --- ### **六、常见问题** - **问题1:小目标漏检** → 解决方案:增加高分辨率检测层,添加更多小火焰样本 - **问题2:误报率高** → 解决方案:收集更多负样本(如红色灯光、夕阳场景) 需要代码实现细节或论文模板可进一步沟通! 🔥
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值