八种点云聚类方法(三)

本文介绍了点云聚类的八种方法,包括OPTICS、Spectral Clustering、Hierarchical Clustering、Mean-shift、BIRCH和Affinity Propagation。这些算法在点云聚类上的应用效果各有特点,如OPTICS基于密度,Spectral Clustering基于图论,Affinity Propagation允许类别数量动态调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

        本节主要介绍OPTICS、Spectral Clustering(SC,即谱聚类)、 Hierarchical Clustering(层次聚类)、Mean-shift(即:均值迁移)、BIRCH、Affinity Propagation等聚类算法在点云聚类上的简单应用效果。DBSCAN和KMEANS聚类已在前两节介绍。skit-lean各个聚类算法的简要介绍请查看sklearn聚类方法详解_飞奔的帅帅的博客-CSDN博客_sklearn 聚类

1 OPTICS

        OPTICS是一种类似于DBSCAN的聚类算法,也是基于密度聚类。skit-learn中的OPTICS同样有多个参数。这里仅设置其中两个min_samples、max_eps,即累中最小的样本数和最大邻域距离。同样地,OPTICS聚类结果的类别也是未知的。

class sklearn.cluster.OPTICS(*, min_samples=5
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值