本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
本节主要介绍OPTICS、Spectral Clustering(SC,即谱聚类)、 Hierarchical Clustering(层次聚类)、Mean-shift(即:均值迁移)、BIRCH、Affinity Propagation等聚类算法在点云聚类上的简单应用效果。DBSCAN和KMEANS聚类已在前两节介绍。skit-lean各个聚类算法的简要介绍请查看sklearn聚类方法详解_飞奔的帅帅的博客-CSDN博客_sklearn 聚类
1 OPTICS
OPTICS是一种类似于DBSCAN的聚类算法,也是基于密度聚类。skit-learn中的OPTICS同样有多个参数。这里仅设置其中两个min_samples、max_eps,即累中最小的样本数和最大邻域距离。同样地,OPTICS聚类结果的类别也是未知的。
class sklearn.cluster.OPTICS(*, min_samples=5
本文介绍了点云聚类的八种方法,包括OPTICS、Spectral Clustering、Hierarchical Clustering、Mean-shift、BIRCH和Affinity Propagation。这些算法在点云聚类上的应用效果各有特点,如OPTICS基于密度,Spectral Clustering基于图论,Affinity Propagation允许类别数量动态调整。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



