avod_源码记录

3 篇文章 0 订阅
1 篇文章 0 订阅

AVOD_源码记录

Table of Contents

  1. AVOD代码框架
  2. 代码细节
    1. 预生成数据
      1. 调用链
      2. 核心部分
    2. 模型训练
      1. 调用链
      2. 核心部分

AVOD代码框架

主要分为以下几个部分:

  • 预生成数据
  • Train
  • Evaluate+Infer

代码细节

预生成数据

用于生成rpn网络的输入数据:包含类聚类的anchor大小信息以及具体每个sample的anchor的生成的anchor信息

调用链

base_dir = avod/
config = avod/avod/configs/mb_preprocessing/rpn_cars(cyclists,pedestrians,people).config
主要的相关模块调用:
scripts/preprocessing/gen_min_batches.py->avod/builders/dataset_builder.py(build_kitti_dataset)->avod/datasets/kitti/kitti_dataset.py(KittiDataset)->avod/datasets/kitti/kitti_utils.py(KittiUtils)->avod/core/mini_batch_utils.py(MiniBatchUtils.preprocess_rpn_mini_batches)->avod/core/mini_batch_preprocessor.py(MiniBatchPreprocessor.preprocess->avod/core/anchor_generator/grid_anchor_3d_generator.py(GridAnchor3dGenerator.generate)

核心部分

  1. 数据前处理:mini_batch Anchor生成

    Avod数据前处理gen_minbacth包括两个部分:生成不同类的size的cluster结果;利用聚类结果生成不同类的Anchor信息,作为RPN的输入数据

    Anchor信息具体为:[max_gt_2d_iou, max_gt_3d_iou, (6 x offsets), class_index],anchor对应的gt_iou(2d和3d),anchor偏移值,对应类的index

    具体步骤为:

    • 先生成anchor_stride(默认为0.5)的3d anchor
    • 生成voxel 2d图,进行empty-anchor的过滤
    • anchors与gt进行iou的计算,确定与生成的anchor iou最高的类,更新offsets与class_index

    核心代码如下:

    # mini_batch_preprocessor.py:49
    def preprocess(self, indices):
            """Preprocesses anchor info and saves info to files
    
            Args:
                indices (int array): sample indices to process.
                    If None, processes all samples
            """
            # Get anchor stride for class,默认为0.5
            anchor_strides = self._anchor_strides
    
            dataset = self._dataset
            dataset_utils = self._dataset.kitti_utils
            classes_name = dataset.classes_name
    
            # Make folder if it doesn't exist yet
            output_dir = self.mini_batch_utils.get_file_path(classes_name,
                                                             anchor_strides,
                                                             sample_name=None)
            os.makedirs(output_dir, exist_ok=True)
    
            # Get clusters for class
            # 生成的cluster size用于anchor size的生成
            all_clusters_sizes, _ = dataset.get_cluster_info()
    
            # 初始化3d_anchor_generator
            anchor_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()
    
            # Load indices of data_split
            all_samples = dataset.sample_list
    
            if indices is None:
                indices = np.arange(len(all_samples))
            num_samples = len(indices)
    
            # For each image in the dataset, save info on the anchors
            for sample_idx in indices:
                # Get image name for given cluster
                sample_name = all_samples[sample_idx].name
                img_idx = int(sample_name)
    
                # Check for existing files and skip to the next
                if self._check_for_existing(classes_name, anchor_strides,
                                            sample_name):
                    print("{} / {}: Sample already preprocessed".format(
                        sample_idx + 1, num_samples, sample_name))
                    continue
    
                # Get ground truth and filter based on difficulty
                ground_truth_list = obj_utils.read_labels(dataset.label_dir,
                                                          img_idx)
    
                # Filter objects to dataset classes
                filtered_gt_list = dataset_utils.filter_labels(ground_truth_list)
                filtered_gt_list = np.asarray(filtered_gt_list)
    
                # Filtering by class has no valid ground truth, skip this image
                if len(filtered_gt_list) == 0:
                    print("{} / {} No {}s for sample {} "
                          "(Ground Truth Filter)".format(
                              sample_idx + 1, num_samples,
                              classes_name, sample_name))
    
                    # Output an empty file and move on to the next image.
                    self._save_to_file(classes_name, anchor_strides, sample_name)
                    continue
    
                # Get ground plane
                ground_plane = obj_utils.get_road_plane(img_idx,
                                                        dataset.planes_dir)
    
                image = Image.open(dataset.get_rgb_image_path(sample_name))
                image_shape = [image.size[1], image.size[0]]
    
                # Generate sliced 2D voxel grid for filtering
                # 生成2d voxel grid,这里只保留了image视角内bev图信息
                vx_grid_2d = dataset_utils.create_sliced_voxel_grid_2d(
                    sample_name,
                    source=dataset.bev_source,
                    image_shape=image_shape)
    
                # List for merging all anchors
                all_anchor_boxes_3d = []
    
                # Create anchors for each class
                for class_idx in range(len(dataset.classes)):
                    # Generate anchors for all classes
                    # 根据不同class的anchor大小以及stride和plane生成3d anchor
                    grid_anchor_boxes_3d = anchor_generator.generate(
                        area_3d=self._area_extents,
                        anchor_3d_sizes=all_clusters_sizes[class_idx],
                        anchor_stride=self._anchor_strides[class_idx],
                        ground_plane=ground_plane)
    
                    all_anchor_boxes_3d.extend(grid_anchor_boxes_3d)
    
                # Filter empty anchors
                all_anchor_boxes_3d = np.asarray(all_anchor_boxes_3d)
                anchors = box_3d_encoder.box_3d_to_anchor(all_anchor_boxes_3d)
                empty_anchor_filter = anchor_filter.get_empty_anchor_filter_2d(
                    anchors, vx_grid_2d, self._density_threshold)
    
                # Calculate anchor info
                # 这里更新了所有anchor和gt的iou信息,以找到anchor匹配的目标target
                anchors_info = self._calculate_anchors_info(
                    all_anchor_boxes_3d, empty_anchor_filter, filtered_gt_list)
    
                anchor_ious = anchors_info[:, self.mini_batch_utils.col_ious]
    
                valid_iou_indices = np.where(anchor_ious > 0.0)[0]
    
                print("{} / {}:"
                      "{:>6} anchors, "
                      "{:>6} iou > 0.0, "
                      "for {:>3} {}(s) for sample {}".format(
                          sample_idx + 1, num_samples,
                          len(anchors_info),
                          len(valid_iou_indices),
                          len(filtered_gt_list), classes_name, sample_name
                      ))
    
                # Save anchors info
                self._save_to_file(classes_name, anchor_strides,
                                   sample_name, anchors_info)
    

    其中3D Anchor生成的步骤:

    • 确定Anchor生成范围(area_extents)

    • 根据stride生成anchor的center点分布

    • 生成size和rotation分布->生成anchor matrix

      def tile_anchors_3d(area_extents,
                      anchor_3d_sizes,
                      anchor_stride,
                      ground_plane):
      """
      Tiles anchors over the area extents by using meshgrids to
      generate combinations of (x, y, z), (l, w, h) and ry.
      Args:
          area_extents: [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
          anchor_3d_sizes: list of 3d anchor sizes N x (l, w, h)
          anchor_stride: stride lengths (x_stride, z_stride)
          ground_plane: coefficients of the ground plane e.g. [0, -1, 0, 0]
      
      Returns:
          boxes: list of 3D anchors in box_3d format N x [x, y, z, l, w, h, ry]
      """
      # Convert sizes to ndarray
      # 由于kitti坐标系的原因:x,z轴定义的为地平面坐标系,而y轴对应高度
      anchor_3d_sizes = np.asarray(anchor_3d_sizes)
      
      anchor_stride_x = anchor_stride[0]
      anchor_stride_z = anchor_stride[1]
      anchor_rotations = np.asarray([0, np.pi / 2.0])
      
      x_start = area_extents[0][0] + anchor_stride[0] / 2.0
      x_end = area_extents[0][1]
      x_centers = np.array(np.arange(x_start, x_end, step=anchor_stride_x),
                           dtype=np.float32)
      
      z_start = area_extents[2][1] - anchor_stride[1] / 2.0
      z_end = area_extents[2][0]
      z_centers = np.array(np.arange(z_start, z_end, step=-anchor_stride_z),
                           dtype=np.float32)
      
      # Use ranges for substitution
      size_indices = np.arange(0, len(anchor_3d_sizes))
      rotation_indices = np.arange(0, len(anchor_rotations))
      
      # Generate matrix for substitution
      # e.g. for two sizes and two rotations
      # [[x0, z0, 0, 0], [x0, z0, 0, 1], [x0, z0, 1, 0], [x0, z0, 1, 1],
      #  [x1, z0, 0, 0], [x1, z0, 0, 1], [x1, z0, 1, 0], [x1, z0, 1, 1], ...]
      before_sub = np.stack(np.meshgrid(x_centers,
                                        z_centers,
                                        size_indices,
                                        rotation_indices),
                            axis=4).reshape(-1, 4)
      
      # Place anchors on the ground plane
      # 利用之前的meshgrid生成anchor的center点
      a, b, c, d = ground_plane
      all_x = before_sub[:, 0]
      all_z = before_sub[:, 1]
      all_y = -(a * all_x + c * all_z + d) / b
      
      # Create empty matrix to return
      num_anchors = len(before_sub)
      all_anchor_boxes_3d = np.zeros((num_anchors, 7))
      
      # Fill in x, y, z
      all_anchor_boxes_3d[:, 0:3] = np.stack((all_x, all_y, all_z), axis=1)
      
      # Fill in shapes
      sizes = anchor_3d_sizes[np.asarray(before_sub[:, 2], np.int32)]
      all_anchor_boxes_3d[:, 3:6] = sizes
      
      # Fill in rotations
      rotations = anchor_rotations[np.asarray(before_sub[:, 3], np.int32)]
      all_anchor_boxes_3d[:, 6] = rotations
      
      return all_anchor_boxes_3d
      

模型训练

avod模型的整体结构包括backbone+RPN+avod网络三个部分,详情参照avod_paperreading
backbone采用的是VGG+FPN的结构,但是添加了bev feature的设计(lidar三维数据转化为二维的bev特征),后与image feature进行融合,RPN网络用于生成region proposal,avod用于最后物体的分类和检测框的回归

调用链

base_dir = avod/
主要的相关模块调用:
config = avod/config/pyramid_cars_with_aug_example.config
scripts/run_training.py->avod/avod/core/trainer.py(这里会完成model,input_data,loss,op等模块的构建)->avod/avod/core/models/avod_model.py->avod/avod/core/models/rpn_model.py

核心部分

  1. 数据前处理

    训练的数据前处理与前文的预生成数据的区别是这里是对输入的原始数据进行处理,主要分为以下几个部分:

    1. 三维点云数据的读取和过滤:

      三维点云数据读入后需要进行去除在image视角外的点云数据包括两个部分:ground_plane_filter+image_filter,前者主要用于生成bev图特征(对应不同高度生成不同体素空间,进行点的特征编码,参照bev的生成),后者主要是将对应cam view外的点进行过滤。

    2. BEV图的生成

      BEV图生成原理是在过滤后的点云数据上,根据height_lo和height_hi的高度范围(相对于ground_plane)生成num_slices个y轴维度的切片(slices)每个切片上按照voxel_size生成一系列单元(voxel),以其中点云的最高点高度作为feature,最终生成(bev_width/voxel_size)*(bev_height/voxel_size)*(num_slices+1)维特征,+1为记录的density信息,代码如下

      #avod/acod/datasets/kitti/kitti_utils.py:109
            def generate_bev(self,
                             source,
                             point_cloud,
                             ground_plane,
                             area_extents,
                             voxel_size):
                """Generates the BEV maps dictionary. One height map is created for
                each slice of the point cloud. One density map is created for
                the whole point cloud.
      
                Args:
                    source: point cloud source
                    point_cloud: point cloud (3, N)
                    ground_plane: ground plane coefficients
                    area_extents: 3D area extents
                        [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
                    voxel_size: voxel size in m
      
                Returns:
                    BEV maps dictionary
                        height_maps: list of height maps
                        density_map: density map
                """
                #得到点云数据
                all_points = np.transpose(point_cloud)
      
                height_maps = []
      
                for slice_idx in range(self.num_slices):
                    height_lo = self.height_lo + slice_idx * self.height_per_division
                    height_hi = height_lo + self.height_per_division
                    #slice_filter相对ground_plane根据高度进行每个slice点云的过滤
                    slice_filter = self.kitti_utils.create_slice_filter(
                        point_cloud,
                        area_extents,
                        ground_plane,
                        height_lo,
                        height_hi)
      
                    # Apply slice filter
                    slice_points = all_points[slice_filter]
      
                    if len(slice_points) > 1:
      
                        # Create Voxel Grid 2D
                        voxel_grid_2d = VoxelGrid2D()
                        voxel_grid_2d.voxelize_2d(
                            slice_points, voxel_size,
                            extents=area_extents,
                            ground_plane=ground_plane,
                            create_leaf_layout=False)
      
                        # Remove y values (all 0)
                        voxel_indices = voxel_grid_2d.voxel_indices[:, [0, 2]]
      
                    # Create empty BEV images
                    height_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                           voxel_grid_2d.num_divisions[2]))
      
                    # Only update pixels where voxels have max height values,
                    # and normalize by height of slices
                    # 生成含有最大高度信息的height_map
                    voxel_grid_2d.heights = voxel_grid_2d.heights - height_lo
                    height_map[voxel_indices[:, 0], voxel_indices[:, 1]] = \
                        np.asarray(voxel_grid_2d.heights) / self.height_per_division
      
                    height_maps.append(height_map)
      
                # Rotate height maps 90 degrees
                # (transpose and flip) is faster than np.rot90
                # 应该是坐标系定义的问题(image和bev)
                height_maps_out = [np.flip(height_maps[map_idx].transpose(), axis=0)
                                   for map_idx in range(len(height_maps))]
      
                #得到density的filter,在全量高度上得到
                density_slice_filter = self.kitti_utils.create_slice_filter(
                    point_cloud,
                    area_extents,
                    ground_plane,
                    self.height_lo,
                    self.height_hi)
      
                density_points = all_points[density_slice_filter]
      
                # Create Voxel Grid 2D
                density_voxel_grid_2d = VoxelGrid2D()
                density_voxel_grid_2d.voxelize_2d(
                    density_points,
                    voxel_size,
                    extents=area_extents,
                    ground_plane=ground_plane,
                    create_leaf_layout=False)
      
                # Generate density map
                density_voxel_indices_2d = \
                    density_voxel_grid_2d.voxel_indices[:, [0, 2]]
      
                density_map = self._create_density_map(
                    num_divisions=density_voxel_grid_2d.num_divisions,
                    voxel_indices_2d=density_voxel_indices_2d,
                    num_pts_per_voxel=density_voxel_grid_2d.num_pts_in_voxel,
                    norm_value=self.NORM_VALUES[source])
      
                bev_maps = dict()
                bev_maps['height_maps'] = height_maps_out
                bev_maps['density_map'] = density_map
      
                return bev_maps
      
    3. 数据增强(data augumentation)

      这部分主要是在读入数据的过程中会进行数据的增强操作,默认car的增强操作包括:flipping+pca_jitter。

  2. Backbone

    backbone(feature extactor)包括两个部分:bev和image,整体结构类似,具体实现参考下文代码,其结构可以概述为conv1*2->pool1->conv2*2->pool2->conv3*2->pool3->conv4->(upconv3+concat3+fusion3)->(upconv2+concat2+fusion2)->(upconv1+concat1+fusion1)

    #avod/core/feature_extractors/bev_vgg_pyramid.py:30
    def build(self,
                  inputs,
                  input_pixel_size,
                  is_training,
                  scope='bev_vgg_pyr'):
            """ Modified VGG for BEV feature extraction with pyramid features
    
            Args:
                inputs: a tensor of size [batch_size, height, width, channels].
                input_pixel_size: size of the input (H x W)
                is_training: True for training, False for validation/testing.
                scope: Optional scope for the variables.
    
            Returns:
                The last op containing the log predictions and end_points dict.
            """
            vgg_config = self.config
    
            with slim.arg_scope(self.vgg_arg_scope(
                    weight_decay=vgg_config.l2_weight_decay)):
                with tf.variable_scope(scope, 'bev_vgg_pyr', [inputs]) as sc:
                    end_points_collection = sc.name + '_end_points'
    
                    # Collect outputs for conv2d, fully_connected and max_pool2d.
                    with slim.arg_scope([slim.conv2d, slim.max_pool2d],
                                        outputs_collections=end_points_collection):
    
                        # Pad 700 to 704 to allow even divisions for max pooling
                        padded = tf.pad(inputs, [[0, 0], [4, 0], [0, 0], [0, 0]])
    
                        # Encoder
                        conv1 = slim.repeat(padded,
                                            vgg_config.vgg_conv1[0],
                                            slim.conv2d,
                                            vgg_config.vgg_conv1[1],
                                            [3, 3],
                                            normalizer_fn=slim.batch_norm,
                                            normalizer_params={
                                                'is_training': is_training},
                                            scope='conv1')
                        pool1 = slim.max_pool2d(conv1, [2, 2], scope='pool1')
    
                        conv2 = slim.repeat(pool1,
                                            vgg_config.vgg_conv2[0],
                                            slim.conv2d,
                                            vgg_config.vgg_conv2[1],
                                            [3, 3],
                                            normalizer_fn=slim.batch_norm,
                                            normalizer_params={
                                                'is_training': is_training},
                                            scope='conv2')
                        pool2 = slim.max_pool2d(conv2, [2, 2], scope='pool2')
    
                        conv3 = slim.repeat(pool2,
                                            vgg_config.vgg_conv3[0],
                                            slim.conv2d,
                                            vgg_config.vgg_conv3[1],
                                            [3, 3],
                                            normalizer_fn=slim.batch_norm,
                                            normalizer_params={
                                                'is_training': is_training},
                                            scope='conv3')
                        pool3 = slim.max_pool2d(conv3, [2, 2], scope='pool3')
    
                        conv4 = slim.repeat(pool3,
                                            vgg_config.vgg_conv4[0],
                                            slim.conv2d,
                                            vgg_config.vgg_conv4[1],
                                            [3, 3],
                                            normalizer_fn=slim.batch_norm,
                                            normalizer_params={
                                                'is_training': is_training},
                                            scope='conv4')
    
                        # Decoder (upsample and fuse features)
                        upconv3 = slim.conv2d_transpose(
                            conv4,
                            vgg_config.vgg_conv3[1],
                            [3, 3],
                            stride=2,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='upconv3')
    
                        concat3 = tf.concat(
                            (conv3, upconv3), axis=3, name='concat3')
                        pyramid_fusion3 = slim.conv2d(
                            concat3,
                            vgg_config.vgg_conv2[1],
                            [3, 3],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='pyramid_fusion3')
    
                        upconv2 = slim.conv2d_transpose(
                            pyramid_fusion3,
                            vgg_config.vgg_conv2[1],
                            [3, 3],
                            stride=2,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='upconv2')
    
                        concat2 = tf.concat(
                            (conv2, upconv2), axis=3, name='concat2')
                        pyramid_fusion_2 = slim.conv2d(
                            concat2,
                            vgg_config.vgg_conv1[1],
                            [3, 3],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='pyramid_fusion2')
    
                        upconv1 = slim.conv2d_transpose(
                            pyramid_fusion_2,
                            vgg_config.vgg_conv1[1],
                            [3, 3],
                            stride=2,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='upconv1')
    
                        concat1 = tf.concat(
                            (conv1, upconv1), axis=3, name='concat1')
                        pyramid_fusion1 = slim.conv2d(
                            concat1,
                            vgg_config.vgg_conv1[1],
                            [3, 3],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={
                                'is_training': is_training},
                            scope='pyramid_fusion1')
    
                        # Slice off padded area
                        sliced = pyramid_fusion1[:, 4:]
    
                    feature_maps_out = sliced
    
                    # Convert end_points_collection into a end_point dict.
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)
    
                    return feature_maps_out, end_points
    
  3. RPN Model

    Backbone(feature extraction)出来的feature会分别经过一个1*1的卷积(bottle_neck)生成proposal网络的input_feature。默认配置设置了path_drop:image和bev两个path会有一定的几率没有输入,类似于drop_out(具体参考avod/avod/core/models/rpn.py:create_path_drop_masks)。之后会将得到的3d anchor映射到bev图和image图上,前者直接投影到ground_plane上,后者通过lidar坐标和image坐标的映射关系得到(取最大的2d框)。之后根据config中的roi_crop_size将得到的proposal feature进行crop_and_resize到相同尺寸。之后会做特征的fusion(默认采用mean fusion),fusioned feature会通过两个分支:3层卷积(论文中为fc,实际代码中为convd)组成的objectness和offsets的预测,这样就形成了first stage的proposal,之后proposal一方面会通过top-k的nms(注意这里的nms是所有类共同做的nms结果)作为second stage的输入,另一方面通过gen_mini_batch生成mini-batch(默认为512个samples,正负例各一半)计算objectness和regression loss(smooth l1),值得注意的是这里的是生成mini-batch的方式采用的是random shuffile的方式,即先shuffle一半的正例(256),如果不足的话用负例补充,没有考虑类比不平衡的问题,所以会造成小样本类别物体收敛慢甚至不收敛的问题。其build 网络部分代码如下:

    #rpn_model.py:280, deteled some code for summary
    def build(self):
    
            # Setup input placeholders
            self._set_up_input_pls()
    
            # Setup feature extractors
            self._set_up_feature_extractors()
    
            bev_proposal_input = self.bev_bottleneck
            img_proposal_input = self.img_bottleneck
    
            fusion_mean_div_factor = 2.0
    
            # If both img and bev probabilites are set to 1.0, don't do
            # path drop.
            if not (self._path_drop_probabilities[0] ==
                    self._path_drop_probabilities[1] == 1.0):
                with tf.variable_scope('rpn_path_drop'):
    
                    random_values = tf.random_uniform(shape=[3],
                                                      minval=0.0,
                                                      maxval=1.0)
    
                    img_mask, bev_mask = self.create_path_drop_masks(
                        self._path_drop_probabilities[0],
                        self._path_drop_probabilities[1],
                        random_values)
    
                    img_proposal_input = tf.multiply(img_proposal_input,
                                                     img_mask)
    
                    bev_proposal_input = tf.multiply(bev_proposal_input,
                                                     bev_mask)
    
                    self.img_path_drop_mask = img_mask
                    self.bev_path_drop_mask = bev_mask
    
                    # Overwrite the division factor
                    fusion_mean_div_factor = img_mask + bev_mask
    
            with tf.variable_scope('proposal_roi_pooling'):
    
                with tf.variable_scope('box_indices'):
                    def get_box_indices(boxes):
                        proposals_shape = boxes.get_shape().as_list()
                        if any(dim is None for dim in proposals_shape):
                            proposals_shape = tf.shape(boxes)
                        ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
                        multiplier = tf.expand_dims(
                            tf.range(start=0, limit=proposals_shape[0]), 1)
                        return tf.reshape(ones_mat * multiplier, [-1])
    
                    bev_boxes_norm_batches = tf.expand_dims(
                        self._bev_anchors_norm_pl, axis=0)
    
                    # These should be all 0's since there is only 1 image
                    tf_box_indices = get_box_indices(bev_boxes_norm_batches)
    
                # Do ROI Pooling on BEV
                bev_proposal_rois = tf.image.crop_and_resize(
                    bev_proposal_input,
                    self._bev_anchors_norm_pl,
                    tf_box_indices,
                    self._proposal_roi_crop_size)
                # Do ROI Pooling on image
                img_proposal_rois = tf.image.crop_and_resize(
                    img_proposal_input,
                    self._img_anchors_norm_pl,
                    tf_box_indices,
                    self._proposal_roi_crop_size)
    
            with tf.variable_scope('proposal_roi_fusion'):
                rpn_fusion_out = None
                if self._fusion_method == 'mean':
                    tf_features_sum = tf.add(bev_proposal_rois, img_proposal_rois)
                    rpn_fusion_out = tf.divide(tf_features_sum,
                                               fusion_mean_div_factor)
                elif self._fusion_method == 'concat':
                    rpn_fusion_out = tf.concat(
                        [bev_proposal_rois, img_proposal_rois], axis=3)
                else:
                    raise ValueError('Invalid fusion method', self._fusion_method)
    
            # TODO: move this section into an separate AnchorPredictor class
            with tf.variable_scope('anchor_predictor', 'ap', [rpn_fusion_out]):
                tensor_in = rpn_fusion_out
    
                # Parse rpn layers config
                layers_config = self._config.layers_config.rpn_config
                l2_weight_decay = layers_config.l2_weight_decay
    
                if l2_weight_decay > 0:
                    weights_regularizer = slim.l2_regularizer(l2_weight_decay)
                else:
                    weights_regularizer = None
    
                with slim.arg_scope([slim.conv2d],
                                    weights_regularizer=weights_regularizer):
                    # Use conv2d instead of fully_connected layers.
                    cls_fc6 = slim.conv2d(tensor_in,
                                          layers_config.cls_fc6,
                                          self._proposal_roi_crop_size,
                                          padding='VALID',
                                          scope='cls_fc6')
    
                    cls_fc6_drop = slim.dropout(cls_fc6,
                                                layers_config.keep_prob,
                                                is_training=self._is_training,
                                                scope='cls_fc6_drop')
    
                    cls_fc7 = slim.conv2d(cls_fc6_drop,
                                          layers_config.cls_fc7,
                                          [1, 1],
                                          scope='cls_fc7')
    
                    cls_fc7_drop = slim.dropout(cls_fc7,
                                                layers_config.keep_prob,
                                                is_training=self._is_training,
                                                scope='cls_fc7_drop')
    
                    cls_fc8 = slim.conv2d(cls_fc7_drop,
                                          2,
                                          [1, 1],
                                          activation_fn=None,
                                          scope='cls_fc8')
    
                    objectness = tf.squeeze(
                        cls_fc8, [1, 2],
                        name='cls_fc8/squeezed')
    
                    # Use conv2d instead of fully_connected layers.
                    reg_fc6 = slim.conv2d(tensor_in,
                                          layers_config.reg_fc6,
                                          self._proposal_roi_crop_size,
                                          padding='VALID',
                                          scope='reg_fc6')
    
                    reg_fc6_drop = slim.dropout(reg_fc6,
                                                layers_config.keep_prob,
                                                is_training=self._is_training,
                                                scope='reg_fc6_drop')
    
                    reg_fc7 = slim.conv2d(reg_fc6_drop,
                                          layers_config.reg_fc7,
                                          [1, 1],
                                          scope='reg_fc7')
    
                    reg_fc7_drop = slim.dropout(reg_fc7,
                                                layers_config.keep_prob,
                                                is_training=self._is_training,
                                                scope='reg_fc7_drop')
    
                    reg_fc8 = slim.conv2d(reg_fc7_drop,
                                          6,
                                          [1, 1],
                                          activation_fn=None,
                                          scope='reg_fc8')
    
                    offsets = tf.squeeze(
                        reg_fc8, [1, 2],
                        name='reg_fc8/squeezed')
    
            # Return the proposals
            with tf.variable_scope('proposals'):
                anchors = self.placeholders[self.PL_ANCHORS]
    
                # Decode anchor regression offsets
                with tf.variable_scope('decoding'):
                    regressed_anchors = anchor_encoder.offset_to_anchor(
                            anchors, offsets)
    
                with tf.variable_scope('bev_projection'):
                    _, bev_proposal_boxes_norm = anchor_projector.project_to_bev(
                        regressed_anchors, self._bev_extents)
    
                with tf.variable_scope('softmax'):
                    objectness_softmax = tf.nn.softmax(objectness)
    
                with tf.variable_scope('nms'):
                    objectness_scores = objectness_softmax[:, 1]
    
                    # Do NMS on regressed anchors
                    top_indices = tf.image.non_max_suppression(
                        bev_proposal_boxes_norm, objectness_scores,
                        max_output_size=self._nms_size,
                        iou_threshold=self._nms_iou_thresh)
    
                    top_anchors = tf.gather(regressed_anchors, top_indices)
                    top_objectness_softmax = tf.gather(objectness_scores,
                                                       top_indices)
                    # top_offsets = tf.gather(offsets, top_indices)
                    # top_objectness = tf.gather(objectness, top_indices)
    
            # Get mini batch
            all_ious_gt = self.placeholders[self.PL_ANCHOR_IOUS]
            all_offsets_gt = self.placeholders[self.PL_ANCHOR_OFFSETS]
            all_classes_gt = self.placeholders[self.PL_ANCHOR_CLASSES]
    
            with tf.variable_scope('mini_batch'):
                mini_batch_utils = self.dataset.kitti_utils.mini_batch_utils
                mini_batch_mask, _ = \
                    mini_batch_utils.sample_rpn_mini_batch(all_ious_gt)
    
    
            # Ground Truth Tensors
            with tf.variable_scope('one_hot_classes'):
    
                # Anchor classification ground truth
                # Object / Not Object
                min_pos_iou = \
                    self.dataset.kitti_utils.mini_batch_utils.rpn_pos_iou_range[0]
    
                objectness_classes_gt = tf.cast(
                    tf.greater_equal(all_ious_gt, min_pos_iou),
                    dtype=tf.int32)
                objectness_gt = tf.one_hot(
                    objectness_classes_gt, depth=2,
                    on_value=1.0 - self._config.label_smoothing_epsilon,
                    off_value=self._config.label_smoothing_epsilon)
    
            # Mask predictions for mini batch
            with tf.variable_scope('prediction_mini_batch'):
                objectness_masked = tf.boolean_mask(objectness, mini_batch_mask)
                offsets_masked = tf.boolean_mask(offsets, mini_batch_mask)
    
            with tf.variable_scope('ground_truth_mini_batch'):
                objectness_gt_masked = tf.boolean_mask(
                    objectness_gt, mini_batch_mask)
                offsets_gt_masked = tf.boolean_mask(all_offsets_gt,
                                                    mini_batch_mask)
    
            # Specify the tensors to evaluate
            predictions = dict()
    
            # Temporary predictions for debugging
            # predictions['anchor_ious'] = anchor_ious
            # predictions['anchor_offsets'] = all_offsets_gt
    
            if self._train_val_test in ['train', 'val']:
                # All anchors
                predictions[self.PRED_ANCHORS] = anchors
    
                # Mini-batch masks
                predictions[self.PRED_MB_MASK] = mini_batch_mask
                # Mini-batch predictions
                predictions[self.PRED_MB_OBJECTNESS] = objectness_masked
                predictions[self.PRED_MB_OFFSETS] = offsets_masked
    
                # Mini batch ground truth
                predictions[self.PRED_MB_OFFSETS_GT] = offsets_gt_masked
                predictions[self.PRED_MB_OBJECTNESS_GT] = objectness_gt_masked
    
                # Proposals after nms
                predictions[self.PRED_TOP_INDICES] = top_indices
                predictions[self.PRED_TOP_ANCHORS] = top_anchors
                predictions[
                    self.PRED_TOP_OBJECTNESS_SOFTMAX] = top_objectness_softmax
    
            else:
                # self._train_val_test == 'test'
                predictions[self.PRED_TOP_ANCHORS] = top_anchors
                predictions[
                    self.PRED_TOP_OBJECTNESS_SOFTMAX] = top_objectness_softmax
    
            return predictions
    
  4. AVOD Model

    AVOD网络部分会得到first stage得到的top-k anchor proposals,得到对应bev和img的anchor projection,进行相同的crop_and_resize操作,之后再进行fusion+n*(fc+fc_drop)进行cls,offsets以及angle vector的预测(fusion默认采用early-fusion:即先进行fusion再进入之后网络层)。生成prediction之后,会解码gt投影到bev图上,然后采用同样的策略生成mini-batch和top-anchor(bev上进行的nms),并且生成对应的objecness,offset,angle的loss。mini-batch的loss作为train过程中进行模型训练,后者生成最终的预测,但是loss好像并没有使用。其中,offset的loss需要转化到3d box上去计算(论文提出的box_4c计算方式)。相关代码如下:

    #avod_model.py:123 deleted code for summary
    def build(self):
            rpn_model = self._rpn_model
    
            # Share the same prediction dict as RPN
            prediction_dict = rpn_model.build()
    
            top_anchors = prediction_dict[RpnModel.PRED_TOP_ANCHORS]
            ground_plane = rpn_model.placeholders[RpnModel.PL_GROUND_PLANE]
    
            class_labels = rpn_model.placeholders[RpnModel.PL_LABEL_CLASSES]
    
            with tf.variable_scope('avod_projection'):
    
                if self._config.expand_proposals_xz > 0.0:
    
                    expand_length = self._config.expand_proposals_xz
    
                    # Expand anchors along x and z
                    with tf.variable_scope('expand_xz'):
                        expanded_dim_x = top_anchors[:, 3] + expand_length
                        expanded_dim_z = top_anchors[:, 5] + expand_length
    
                        expanded_anchors = tf.stack([
                            top_anchors[:, 0],
                            top_anchors[:, 1],
                            top_anchors[:, 2],
                            expanded_dim_x,
                            top_anchors[:, 4],
                            expanded_dim_z
                        ], axis=1)
    
                    avod_projection_in = expanded_anchors
    
                else:
                    avod_projection_in = top_anchors
    
                with tf.variable_scope('bev'):
                    # Project top anchors into bev and image spaces
                    bev_proposal_boxes, bev_proposal_boxes_norm = \
                        anchor_projector.project_to_bev(
                            avod_projection_in,
                            self.dataset.kitti_utils.bev_extents)
    
                    # Reorder projected boxes into [y1, x1, y2, x2]
                    bev_proposal_boxes_tf_order = \
                        anchor_projector.reorder_projected_boxes(
                            bev_proposal_boxes)
                    bev_proposal_boxes_norm_tf_order = \
                        anchor_projector.reorder_projected_boxes(
                            bev_proposal_boxes_norm)
    
                with tf.variable_scope('img'):
                    image_shape = tf.cast(tf.shape(
                        rpn_model.placeholders[RpnModel.PL_IMG_INPUT])[0:2],
                        tf.float32)
                    img_proposal_boxes, img_proposal_boxes_norm = \
                        anchor_projector.tf_project_to_image_space(
                            avod_projection_in,
                            rpn_model.placeholders[RpnModel.PL_CALIB_P2],
                            image_shape)
                    # Only reorder the normalized img
                    img_proposal_boxes_norm_tf_order = \
                        anchor_projector.reorder_projected_boxes(
                            img_proposal_boxes_norm)
    
            bev_feature_maps = rpn_model.bev_feature_maps
            img_feature_maps = rpn_model.img_feature_maps
    
            if not (self._path_drop_probabilities[0] ==
                    self._path_drop_probabilities[1] == 1.0):
    
                with tf.variable_scope('avod_path_drop'):
    
                    img_mask = rpn_model.img_path_drop_mask
                    bev_mask = rpn_model.bev_path_drop_mask
    
                    img_feature_maps = tf.multiply(img_feature_maps,
                                                   img_mask)
    
                    bev_feature_maps = tf.multiply(bev_feature_maps,
                                                   bev_mask)
            else:
                bev_mask = tf.constant(1.0)
                img_mask = tf.constant(1.0)
    
            # ROI Pooling
            with tf.variable_scope('avod_roi_pooling'):
                def get_box_indices(boxes):
                    proposals_shape = boxes.get_shape().as_list()
                    if any(dim is None for dim in proposals_shape):
                        proposals_shape = tf.shape(boxes)
                    ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
                    multiplier = tf.expand_dims(
                        tf.range(start=0, limit=proposals_shape[0]), 1)
                    return tf.reshape(ones_mat * multiplier, [-1])
    
                bev_boxes_norm_batches = tf.expand_dims(
                    bev_proposal_boxes_norm, axis=0)
    
                # These should be all 0's since there is only 1 image
                tf_box_indices = get_box_indices(bev_boxes_norm_batches)
    
                # Do ROI Pooling on BEV
                bev_rois = tf.image.crop_and_resize(
                    bev_feature_maps,
                    bev_proposal_boxes_norm_tf_order,
                    tf_box_indices,
                    self._proposal_roi_crop_size,
                    name='bev_rois')
                # Do ROI Pooling on image
                img_rois = tf.image.crop_and_resize(
                    img_feature_maps,
                    img_proposal_boxes_norm_tf_order,
                    tf_box_indices,
                    self._proposal_roi_crop_size,
                    name='img_rois')
    
            # Fully connected layers (Box Predictor)
            avod_layers_config = self.model_config.layers_config.avod_config
    
            fc_output_layers = \
                avod_fc_layers_builder.build(
                    layers_config=avod_layers_config,
                    input_rois=[bev_rois, img_rois],
                    input_weights=[bev_mask, img_mask],
                    num_final_classes=self._num_final_classes,
                    box_rep=self._box_rep,
                    top_anchors=top_anchors,
                    ground_plane=ground_plane,
                    is_training=self._is_training)
    
            all_cls_logits = \
                fc_output_layers[avod_fc_layers_builder.KEY_CLS_LOGITS]
            all_offsets = fc_output_layers[avod_fc_layers_builder.KEY_OFFSETS]
    
            # This may be None
            all_angle_vectors = \
                fc_output_layers.get(avod_fc_layers_builder.KEY_ANGLE_VECTORS)
    
            with tf.variable_scope('softmax'):
                all_cls_softmax = tf.nn.softmax(
                    all_cls_logits)
    
            ######################################################
            # Subsample mini_batch for the loss function
            ######################################################
            # Get the ground truth tensors
            anchors_gt = rpn_model.placeholders[RpnModel.PL_LABEL_ANCHORS]
            if self._box_rep in ['box_3d', 'box_4ca']:
                boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
                orientations_gt = boxes_3d_gt[:, 6]
            elif self._box_rep in ['box_8c', 'box_8co', 'box_4c']:
                boxes_3d_gt = rpn_model.placeholders[RpnModel.PL_LABEL_BOXES_3D]
            else:
                raise NotImplementedError('Ground truth tensors not implemented')
    
            # Project anchor_gts to 2D bev
            with tf.variable_scope('avod_gt_projection'):
                bev_anchor_boxes_gt, _ = anchor_projector.project_to_bev(
                    anchors_gt, self.dataset.kitti_utils.bev_extents)
    
                bev_anchor_boxes_gt_tf_order = \
                    anchor_projector.reorder_projected_boxes(bev_anchor_boxes_gt)
    
            with tf.variable_scope('avod_box_list'):
                # Convert to box_list format
                anchor_box_list_gt = box_list.BoxList(bev_anchor_boxes_gt_tf_order)
                anchor_box_list = box_list.BoxList(bev_proposal_boxes_tf_order)
            #得到minibatch的mask,label index和对应的匹配到的gt index
            mb_mask, mb_class_label_indices, mb_gt_indices = \
                self.sample_mini_batch(
                    anchor_box_list_gt=anchor_box_list_gt,
                    anchor_box_list=anchor_box_list,
                    class_labels=class_labels)
    
            # Create classification one_hot vector
            with tf.variable_scope('avod_one_hot_classes'):
                mb_classification_gt = tf.one_hot(
                    mb_class_label_indices,
                    depth=self._num_final_classes,
                    on_value=1.0 - self._config.label_smoothing_epsilon,
                    off_value=(self._config.label_smoothing_epsilon /
                               self.dataset.num_classes))
    
            # TODO: Don't create a mini batch in test mode
            # Mask predictions
            with tf.variable_scope('avod_apply_mb_mask'):
                # Classification
                mb_classifications_logits = tf.boolean_mask(
                    all_cls_logits, mb_mask)
                mb_classifications_softmax = tf.boolean_mask(
                    all_cls_softmax, mb_mask)
    
                # Offsets
                mb_offsets = tf.boolean_mask(all_offsets, mb_mask)
    
                # Angle Vectors
                if all_angle_vectors is not None:
                    mb_angle_vectors = tf.boolean_mask(all_angle_vectors, mb_mask)
                else:
                    mb_angle_vectors = None
    
            # Encode anchor offsets
            with tf.variable_scope('avod_encode_mb_anchors'):
                mb_anchors = tf.boolean_mask(top_anchors, mb_mask)
    
                if self._box_rep == 'box_3d':
                    # Gather corresponding ground truth anchors for each mb sample
                    mb_anchors_gt = tf.gather(anchors_gt, mb_gt_indices)
                    mb_offsets_gt = anchor_encoder.tf_anchor_to_offset(
                        mb_anchors, mb_anchors_gt)
    
                    # Gather corresponding ground truth orientation for each
                    # mb sample
                    mb_orientations_gt = tf.gather(orientations_gt,
                                                   mb_gt_indices)
                elif self._box_rep in ['box_8c', 'box_8co']:
    
                    # Get boxes_3d ground truth mini-batch and convert to box_8c
                    mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                    if self._box_rep == 'box_8c':
                        mb_boxes_8c_gt = \
                            box_8c_encoder.tf_box_3d_to_box_8c(mb_boxes_3d_gt)
                    elif self._box_rep == 'box_8co':
                        mb_boxes_8c_gt = \
                            box_8c_encoder.tf_box_3d_to_box_8co(mb_boxes_3d_gt)
    
                    # Convert proposals: anchors -> box_3d -> box8c
                    proposal_boxes_3d = \
                        box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                    proposal_boxes_8c = \
                        box_8c_encoder.tf_box_3d_to_box_8c(proposal_boxes_3d)
    
                    # Get mini batch offsets
                    mb_boxes_8c = tf.boolean_mask(proposal_boxes_8c, mb_mask)
                    mb_offsets_gt = box_8c_encoder.tf_box_8c_to_offsets(
                        mb_boxes_8c, mb_boxes_8c_gt)
    
                    # Flatten the offsets to a (N x 24) vector
                    mb_offsets_gt = tf.reshape(mb_offsets_gt, [-1, 24])
    
                elif self._box_rep in ['box_4c', 'box_4ca']:
    
                    # Get ground plane for box_4c conversion
                    ground_plane = self._rpn_model.placeholders[
                        self._rpn_model.PL_GROUND_PLANE]
    
                    # Convert gt boxes_3d -> box_4c
                    mb_boxes_3d_gt = tf.gather(boxes_3d_gt, mb_gt_indices)
                    mb_boxes_4c_gt = box_4c_encoder.tf_box_3d_to_box_4c(
                        mb_boxes_3d_gt, ground_plane)
    
                    # Convert proposals: anchors -> box_3d -> box_4c
                    proposal_boxes_3d = \
                        box_3d_encoder.anchors_to_box_3d(top_anchors, fix_lw=True)
                    proposal_boxes_4c = \
                        box_4c_encoder.tf_box_3d_to_box_4c(proposal_boxes_3d,
                                                           ground_plane)
    
                    # Get mini batch
                    mb_boxes_4c = tf.boolean_mask(proposal_boxes_4c, mb_mask)
                    mb_offsets_gt = box_4c_encoder.tf_box_4c_to_offsets(
                        mb_boxes_4c, mb_boxes_4c_gt)
    
                    if self._box_rep == 'box_4ca':
                        # Gather corresponding ground truth orientation for each
                        # mb sample
                        mb_orientations_gt = tf.gather(orientations_gt,
                                                       mb_gt_indices)
    
                else:
                    raise NotImplementedError(
                        'Anchor encoding not implemented for', self._box_rep)
    
            ######################################################
            # Final Predictions
            ######################################################
            # Get orientations from angle vectors
            if all_angle_vectors is not None:
                with tf.variable_scope('avod_orientation'):
                    all_orientations = \
                        orientation_encoder.tf_angle_vector_to_orientation(
                            all_angle_vectors)
    
            # Apply offsets to regress proposals
            with tf.variable_scope('avod_regression'):
                if self._box_rep == 'box_3d':
                    prediction_anchors = \
                        anchor_encoder.offset_to_anchor(top_anchors,
                                                        all_offsets)
    
                elif self._box_rep in ['box_8c', 'box_8co']:
                    # Reshape the 24-dim regressed offsets to (N x 3 x 8)
                    reshaped_offsets = tf.reshape(all_offsets,
                                                  [-1, 3, 8])
                    # Given the offsets, get the boxes_8c
                    prediction_boxes_8c = \
                        box_8c_encoder.tf_offsets_to_box_8c(proposal_boxes_8c,
                                                            reshaped_offsets)
                    # Convert corners back to box3D
                    prediction_boxes_3d = \
                        box_8c_encoder.box_8c_to_box_3d(prediction_boxes_8c)
    
                    # Convert the box_3d to anchor format for nms
                    prediction_anchors = \
                        box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)
    
                elif self._box_rep in ['box_4c', 'box_4ca']:
                    # Convert predictions box_4c -> box_3d
                    prediction_boxes_4c = \
                        box_4c_encoder.tf_offsets_to_box_4c(proposal_boxes_4c,
                                                            all_offsets)
    
                    prediction_boxes_3d = \
                        box_4c_encoder.tf_box_4c_to_box_3d(prediction_boxes_4c,
                                                           ground_plane)
    
                    # Convert to anchor format for nms
                    prediction_anchors = \
                        box_3d_encoder.tf_box_3d_to_anchor(prediction_boxes_3d)
    
                else:
                    raise NotImplementedError('Regression not implemented for',
                                              self._box_rep)
    
            # Apply Non-oriented NMS in BEV
            with tf.variable_scope('avod_nms'):
                bev_extents = self.dataset.kitti_utils.bev_extents
    
                with tf.variable_scope('bev_projection'):
                    # Project predictions into BEV
                    avod_bev_boxes, _ = anchor_projector.project_to_bev(
                        prediction_anchors, bev_extents)
                    avod_bev_boxes_tf_order = \
                        anchor_projector.reorder_projected_boxes(
                            avod_bev_boxes)
    
                # Get top score from second column onward
                all_top_scores = tf.reduce_max(all_cls_logits[:, 1:], axis=1)
    
                # Apply NMS in BEV
                nms_indices = tf.image.non_max_suppression(
                    avod_bev_boxes_tf_order,
                    all_top_scores,
                    max_output_size=self._nms_size,
                    iou_threshold=self._nms_iou_threshold)
    
                # Gather predictions from NMS indices
                top_classification_logits = tf.gather(all_cls_logits,
                                                      nms_indices)
                top_classification_softmax = tf.gather(all_cls_softmax,
                                                       nms_indices)
                top_prediction_anchors = tf.gather(prediction_anchors,
                                                   nms_indices)
    
                if self._box_rep == 'box_3d':
                    top_orientations = tf.gather(
                        all_orientations, nms_indices)
    
                elif self._box_rep in ['box_8c', 'box_8co']:
                    top_prediction_boxes_3d = tf.gather(
                        prediction_boxes_3d, nms_indices)
                    top_prediction_boxes_8c = tf.gather(
                        prediction_boxes_8c, nms_indices)
    
                elif self._box_rep == 'box_4c':
                    top_prediction_boxes_3d = tf.gather(
                        prediction_boxes_3d, nms_indices)
                    top_prediction_boxes_4c = tf.gather(
                        prediction_boxes_4c, nms_indices)
    
                elif self._box_rep == 'box_4ca':
                    top_prediction_boxes_3d = tf.gather(
                        prediction_boxes_3d, nms_indices)
                    top_prediction_boxes_4c = tf.gather(
                        prediction_boxes_4c, nms_indices)
                    top_orientations = tf.gather(
                        all_orientations, nms_indices)
    
                else:
                    raise NotImplementedError('NMS gather not implemented for',
                                              self._box_rep)
    
            if self._train_val_test in ['train', 'val']:
                # Additional entries are added to the shared prediction_dict
                # Mini batch predictions
                prediction_dict[self.PRED_MB_CLASSIFICATION_LOGITS] = \
                    mb_classifications_logits
                prediction_dict[self.PRED_MB_CLASSIFICATION_SOFTMAX] = \
                    mb_classifications_softmax
                prediction_dict[self.PRED_MB_OFFSETS] = mb_offsets
    
                # Mini batch ground truth
                prediction_dict[self.PRED_MB_CLASSIFICATIONS_GT] = \
                    mb_classification_gt
                prediction_dict[self.PRED_MB_OFFSETS_GT] = mb_offsets_gt
    
                # Top NMS predictions
                prediction_dict[self.PRED_TOP_CLASSIFICATION_LOGITS] = \
                    top_classification_logits
                prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                    top_classification_softmax
    
                prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                    top_prediction_anchors
    
                # Mini batch predictions (for debugging)
                prediction_dict[self.PRED_MB_MASK] = mb_mask
                # prediction_dict[self.PRED_MB_POS_MASK] = mb_pos_mask
                prediction_dict[self.PRED_MB_CLASS_INDICES_GT] = \
                    mb_class_label_indices
    
                # All predictions (for debugging)
                prediction_dict[self.PRED_ALL_CLASSIFICATIONS] = \
                    all_cls_logits
                prediction_dict[self.PRED_ALL_OFFSETS] = all_offsets
    
                # Path drop masks (for debugging)
                prediction_dict['bev_mask'] = bev_mask
                prediction_dict['img_mask'] = img_mask
    
            else:
                # self._train_val_test == 'test'
                prediction_dict[self.PRED_TOP_CLASSIFICATION_SOFTMAX] = \
                    top_classification_softmax
                prediction_dict[self.PRED_TOP_PREDICTION_ANCHORS] = \
                    top_prediction_anchors
    
            if self._box_rep == 'box_3d':
                prediction_dict[self.PRED_MB_ANCHORS_GT] = mb_anchors_gt
                prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = mb_orientations_gt
                prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors
    
                prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations
    
                # For debugging
                prediction_dict[self.PRED_ALL_ANGLE_VECTORS] = all_angle_vectors
    
            elif self._box_rep in ['box_8c', 'box_8co']:
                prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                    top_prediction_boxes_3d
    
                # Store the corners before converting for visualization purposes
                prediction_dict[self.PRED_TOP_BOXES_8C] = top_prediction_boxes_8c
    
            elif self._box_rep == 'box_4c':
                prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                    top_prediction_boxes_3d
                prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c
    
            elif self._box_rep == 'box_4ca':
                if self._train_val_test in ['train', 'val']:
                    prediction_dict[self.PRED_MB_ORIENTATIONS_GT] = \
                        mb_orientations_gt
                    prediction_dict[self.PRED_MB_ANGLE_VECTORS] = mb_angle_vectors
    
                prediction_dict[self.PRED_TOP_PREDICTION_BOXES_3D] = \
                    top_prediction_boxes_3d
                prediction_dict[self.PRED_TOP_BOXES_4C] = top_prediction_boxes_4c
                prediction_dict[self.PRED_TOP_ORIENTATIONS] = top_orientations
    
            else:
                raise NotImplementedError('Prediction dict not implemented for',
                                          self._box_rep)
    
            # prediction_dict[self.PRED_MAX_IOUS] = max_ious
            # prediction_dict[self.PRED_ALL_IOUS] = all_ious
    
            return prediction_dict
    
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要在Windows上搭建3D目标检测的环境,你需要进行以下步骤: 1. 安装CUDA和cuDNN:首先,确保你的计算机上已经安装了NVIDIA的GPU和最新版本的CUDA和cuDNN。你可以从NVIDIA的官方网站下载并安装它们。 2. 安装Anaconda:在Windows上安装Anaconda是一个方便的方法,可以帮助你配置Python环境和依赖库。从Anaconda的官方网站下载并安装Anaconda。 3. 创建虚拟环境:在Anaconda Prompt上,使用conda命令创建一个虚拟环境,并安装Python和必要的依赖库。例如,执行以下命令: ``` conda create --name env_name python=3.6 conda activate env_name conda install numpy opencv pytorch torchvision -c pytorch ``` 4. 下载数据集:选择一个3D目标检测的数据集,比如KITTI、SUN RGB-D等,并从官方网站上下载数据集。 5. 下载代码:从GitHub上下载3D目标检测的代码,例如MV3D、AVOD、SECOND等。 6. 配置环境变量:将CUDA和cuDNN的路径添加到环境变量中,例如: ``` set PATH=%PATH%;C:\Program Files\NVIDIA Corporation\cuda\bin;C:\Program Files\NVIDIA Corporation\NvToolsExt\bin;C:\Program Files\NVIDIA Corporation\cuDNN\bin set CUDA_HOME=C:\Program Files\NVIDIA Corporation\cuda set CUDA_TOOLKIT_ROOT_DIR=C:\Program Files\NVIDIA Corporation\cuda set CUDA_PATH=C:\Program Files\NVIDIA Corporation\cuda set CUDNN_HOME=C:\Program Files\NVIDIA Corporation\cuDNN ``` 7. 训练模型:使用PyTorch等深度学习框架,训练一个3D目标检测模型,比如MV3D、AVOD、SECOND等。 8. 测试模型:使用训练好的模型,在测试集上进行测试,并评估模型的性能指标,比如准确率、召回率、精确度等。 需要注意的是,不同的3D目标检测模型可能需要不同的依赖库和环境配置,因此在搭建环境时需要根据模型的要求进行相应的配置。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值