物理学习笔记1-角动量与转动惯量

可能更好的阅读体验:我的博客

哔哩哔哩专栏

转动惯量导入

我们知道,力的定义如下:

F → = m a → = m d v → d t = d p → d t \overrightarrow{F}=m\overrightarrow{a}=m\frac{ {\rm d} \overrightarrow{v} }{ {\rm d} t }=\frac{ {\rm d} \overrightarrow{p} }{ {\rm d} t} F =ma =mdtdv =dtdp

(其中 F F F是力。根据牛顿第二定律, F = m a F=ma F=ma m m m为物体的质量, a a a为物体的加速度。 p p p为动量,定义如 p → = m v → \overrightarrow{p}=m\overrightarrow{v} p =mv 。矢量物理量仅在本章打向量箭头,方便理解)

根据角动量的定义:

L → = r × p → = r × ( m v → ) \overrightarrow{L}=r\times \overrightarrow{p}=r\times (m\overrightarrow{v}) L =r×p =r×(mv )

(其中 L L L为角动量)

显然可得:

d L → d t = M → = F → × r → \frac{ {\rm d} \overrightarrow{L} }{ {\rm d} t}=\overrightarrow{M}=\overrightarrow{F}\times\overrightarrow{r} dtdL =M =F ×r

(其中 M M M为力矩)

我们可以类比力的定义式子,我们是否可以用角加速度乘以一个东西定义力矩呢?显然可以。

F → × r → = I β → \overrightarrow{F}\times\overrightarrow{r}=I\overrightarrow{\beta} F ×r =Iβ

(其中 β \beta β为角加速度)

这是我们需要定义一个新的物理量 I I I。在力的定义式中, m m m的全称为“惯性质量”。那么我们可以称 I I I为“转动惯性质量”,简称“转动惯量”。

转动惯量的定义式

根据上面的公式,我们可以得到:

d L d t = I β \frac{ {\rm d} L}{ {\rm d} t}=I\beta dtdL=Iβ

两边同时对时间积分:

∫ I β d t = ∫ d L \int I\beta {\rm d} t=\int {\rm d} L Iβdt=dL

可得:

L = I ⋅ Δ ω L=I\cdot\Delta\omega L=IΔω

(其中 Δ ω \Delta\omega Δω为角速度的变化量)

小绿本《物理竞赛教程(高中第一分册)》中的刚体力学那一章对转动惯量的定义原话如下:

转动惯量是描述刚体转动惯性大小的物理量。设刚体中质量元 d m {\rm d}m dm与转轴的距离为 r r r,则刚体绕该轴转动时的转动惯量定义为 I = ∫ r 2 d m I=\int r^2 {\rm d}m I=r2dm

刚体的转动惯量,既与刚体的质量及其分布情况有关,也与转轴的位置有关。设刚体的质量为 m m m,则转动惯量可记为 I = m r 0 2 I=mr_0^2 I=mr02

其中 r 0 r_0 r0称为刚体的回旋半径。

根据我们计算得到的 L = I ⋅ Δ ω L=I\cdot\Delta\omega L=IΔω,我们可以尝试将其换一种形式表达:

I = L Δ ω = r m v v r = m r 2 \begin{aligned} I&=\frac{L}{\Delta\omega} \\ &= \frac{rmv}{\frac{v}{r} }\\ &= mr^2 \end{aligned} I=ΔωL=rvrmv=mr2

由此可见,我们的计算是没有问题的。

那么动能的公式,我们可以推导成 I I I ω \omega ω的形式吗?当然可以!

E k = 1 2 m v 2 = 1 2 m ( ω R ) 2 = 1 2 I ω 2 \begin{aligned} E_k&=\frac{1}{2}mv^2\\ &=\frac{1}{2}m(\omega R)^2\\ &=\frac{1}{2}I\omega^2 \end{aligned} Ek=21mv2=21m(ωR)2=21Iω2

物体转动惯量的计算

1. 质点的转动惯量

对于一个质量 m m m的质点,与转轴的垂直距离为 r r r时,根据定义式,其转动惯量 I = m r 2 I=mr^2 I=mr2

2. 棍棒的转动惯量

(1) 端点轴

对于一个质量为 m m m,长度为 l l l的密度均匀棍棒,围绕其一端点旋转。设其线密度 λ = m l \lambda=\frac{m}{l} λ=lm,将其木棒分成许多长度为 Δ r \Delta r Δr的小块,每个距离转轴为 r i r_i ri

I = ∑ λ Δ r ⋅ r i 2 = ∫ 0 l λ r 2 d r = 1 3 m l 2 \begin{aligned} I&=\sum\lambda\Delta r\cdot r_i^2 \\ &= \int_0^l \lambda r^2 {\rm d} r\\ &= \frac{1}{3}ml^2 \end{aligned} I=λΔrri2=0lλr2dr=31ml2

(2) 中心轴(质心轴)

同样的木棒,围绕其中心(质心)轴旋转,可看做两个小棍棒围绕端点旋转,并且其长度 l ′ = l 2 l'=\frac{l}{2} l=2l,易得

I = 1 12 m l 2 I=\frac{1}{12}ml^2 I=121ml2

(3) 偏移中心的棍棒转动惯量

我们假设原先转轴的转动惯量为 I 0 I_0 I0,偏移转轴距离 d d d后的转动惯量为 I I I,棍棒质量为 m m m,长度为 l l l。我们从转轴向外积分可得:

I 0 = ∑ Δ m r i 2 \begin{aligned} I_0&=\sum \Delta mr_i^2 \\ \end{aligned} I0=Δmri2

I = ∑ Δ m ( r i + d ) 2 = ∑ Δ m ( r i 2 + 2 r i d + d 2 ) = I 0 + d 2 m + ∑ ( Δ m ⋅ 2 r i d ) \begin{aligned} I&= \sum \Delta m(r_i+d)^2 \\ &= \sum \Delta m(r_i^2+2r_id+d^2)\\ &= I_0+d^2m+\sum(\Delta m\cdot 2r_id) \end{aligned} I=Δm(ri+d)2=Δm(ri2+2rid+d2)=I0+d2m+(Δm2rid)

我们发现,当转轴取质心 C C C时, ∑ ( Δ m ⋅ 2 r i d ) = 0 \sum(\Delta m\cdot 2r_id)=0 (Δm2rid)=0。所以对于任意一个转轴,与质心距离为 d d d时,转动惯量

I = I C + d 2 m I=I_C+d^2m I=IC+d2m

这也被称作平行轴定理

3. 圆盘的转动惯量

我们可以从中心往外积分

I = ∑ Δ m r 2 = ∑ 2 π r Δ r ⋅ m π R r 2 = ∫ 0 R 2 π m π R 2 r 3 d r = 1 2 m R 2 \begin{aligned} I&=\sum \Delta mr^2 \\ &= \sum 2\pi r\Delta r\cdot\frac{m}{\pi R}r^2\\ &= \int_0^R \frac{2\pi m}{\pi R^2}r^3 {\rm d} r\\ &= \frac{1}{2}mR^2 \end{aligned} I=Δmr2=2πrΔrπRmr2=0RπR22πmr3dr=21mR2

4. 薄球壳的转动惯量

从上往下把球壳看做圆环即可

设其面密度 σ = M 4 π R 2 \sigma=\frac{M}{4\pi R^2} σ=4πR2M,极坐标角度为 θ \theta θ,则其宽度为 R d θ R {\rm d}\theta Rdθ,面积 d s i = 2 π R sin ⁡ θ ⋅ R d θ = 2 π R 2 sin ⁡ θ d θ ds_i=2\pi R\sin\theta\cdot R{\rm d}\theta=2\pi R^2\sin\theta{\rm d}\theta dsi=2πRsinθRdθ=2πR2sinθdθ,圆环半径 r r r R sin ⁡ θ R\sin\theta Rsinθ

I = ∫ 0 π r 2 d m = ∫ R 2 sin ⁡ 2 θ ⋅ σ ⋅ 2 π R sin ⁡ θ d θ = 2 π σ R 4 ∫ sin ⁡ 3 θ d θ = 2 π σ R 4 ⋅ 4 3 = 2 3 M R 2 \begin{aligned} I&=\int_0^\pi r^2{\rm d}m\\ &=\int R^2\sin^2\theta\cdot\sigma\cdot2\pi R\sin\theta{\rm d}\theta\\ &=2\pi\sigma R^4\int \sin^3\theta{\rm d}\theta\\ &=2\pi\sigma R^4\cdot\frac{4}{3}\\ &=\frac{2}{3}MR^2 \end{aligned} I=0πr2dm=R2sin2θσ2πRsinθdθ=2πσR4sin3θdθ=2πσR434=32MR2

5. 球体的转动惯量

球体可以从球心向外积分,分成许多薄球壳。

设球的体密度 ρ = M 4 π R 3 3 = 3 M 4 π R 3 \rho=\frac{M}{\frac{4\pi R^3}{3} }=\frac{3M}{4\pi R^3} ρ=34πR3M=4πR33M。每一个球壳半径为 r r r,厚度 d r {\rm d}r dr,体积 4 π r 2 d r 4\pi r^2{\rm d}r 4πr2dr

I = ∫ 0 R 2 3 r 2 d m = 2 3 ρ ∫ 0 R r 2 d V = 2 M R 3 ∫ 0 R r 4 d r = 2 5 M R 2 \begin{aligned} I&=\int_0^R \frac{2}{3}r^2{\rm d}m\\ &=\frac{2}{3}\rho\int_0^R r^2{\rm d}V\\ &=\frac{2M}{R^3}\int_0^R r^4{\rm d}r\\ &=\frac{2}{5}MR^2 \end{aligned} I=0R32r2dm=32ρ0Rr2dV=R32M0Rr4dr=52MR2

转动惯量的例题

1. 小人击球(清华大学强基试题)

题目描述

(多选)手持球棒一端打击放置在底座上的球,击打过程中人的手可近似为不动。球棒质量为 1 k g 1kg 1kg,长 1.2 m 1.2m 1.2m,角速度为 10 r a d / s 10rad/s 10rad/s,球的质量为 0.75 k g 0.75kg 0.75kg,则打出后球的速度可能为

A. 7.0 m / s 7.0m/s 7.0m/s

B. 6.5 m / s 6.5m/s 6.5m/s

C. 5.7 m / s 5.7m/s 5.7m/s

D. 5.3 m / s 5.3m/s 5.3m/s

答案

ABCD

解析

设球棒转动惯量为 I I I,长度为 l = 1.2 m l=1.2m l=1.2m,质量为 m = 1 k g m=1kg m=1kg,球的速度为 v v v,原角速度 ω 0 = 10 r a d / s \omega_0=10rad/s ω0=10rad/s,击打后的角速度为 ω \omega ω,易得

I ω 0 = I ω + l m v I\omega_0=I\omega+lmv Iω0=Iω+lmv

最小值情况(最坏情况,球的恢复系数小):

l ω = v l\omega=v lω=v

最大值情况(过程能量守恒,没有损失):

1 2 I ω 0 2 = 1 2 I ω 2 + 1 2 m v 2 \frac{1}{2}I\omega_0^2=\frac{1}{2}I\omega^2+\frac{1}{2}mv^2 21Iω02=21Iω2+21mv2

计算可得四个答案全部在数值范围内。

2. 轻杆吊球(深圳中学直升考试题)

题目描述

如图,有一绳子挂在天花板上的 A A A点,绳子底端挂着一个轻杆 C D CD CD,长 2 l 2l 2l,被绳子悬挂在中间 B B B点,两侧悬挂着质量为 m m m的球。 C D CD CD点下方也挂着一根轻杆 E F EF EF,长度也为 2 l 2l 2l,悬挂两根轻杆的绳子 C E CE CE D F DF DF均长 l l l。现剪断 D F DF DF处的绳子,请问在绳子被剪断的那一瞬间,绳子 A B AB AB的拉力T为多少?

答案

T = 8 3 m g T=\frac{8}{3}mg T=38mg

解析

先分析四个球的加速度。

E E E球受到绳子拉力为 T ′ T' T。对 E E E球受力分析,易得

G − T ′ = m a G-T'=ma GT=ma

C B D CBD CBD杆列角动量守恒。以 B B B点为转轴,有

l T ′ = 2 m l 2 a l lT'=2ml^2\frac{a}{l} lT=2ml2la

(其中 l T ′ lT' lT C C C点的角动量, T ′ T' T是绳子上 E E E点的反作用力。 C C C球与 D D D球的总转动惯量为 2 m l 2 2ml^2 2ml2,而角加速度 β = a l \beta=\frac{a}{l} β=la是根据 v = ω r v=\omega r v=ωr两侧对时间求导得来的)

解得 T = 8 3 m g T=\frac{8}{3}mg T=38mg

3. 绳拽滚轴(清华大学强基试题改编)

题目描述

现有一线轴,其内外半径分别为 r r r R R R,该线轴的转动惯量为 I I I。现以水平面向上 θ \theta θ角大小为 F F F的力拉这个线轴。请问:在 θ \theta θ角为多少时,无论力 F F F多大,都无法使得这个线轴为纯滚动?

答案

θ = arccos ⁡ ( r R ) \theta=\arccos(\frac{r}{R}) θ=arccos(Rr)

解析

从力,力矩,角速度三个方向列方程可得:

{ F cos ⁡ θ − f = m a − F r + f R = I β β R = a ( ω R = v ) \begin{cases} F\cos\theta-f=ma \\ -Fr+fR=I\beta \\ \beta R=a\quad(\omega R=v)\\ \end{cases} Fcosθf=maFr+fR=IββR=a(ωR=v)

只需使得该方程无解即可。

解得 θ = arccos ⁡ ( r R ) \theta=\arccos(\frac{r}{R}) θ=arccos(Rr)

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值