转动惯量计算

本文介绍了转动惯量的概念及其在动能计算中的应用。从单摆问题出发,当物体不能简化为质点时,引入转动惯量来处理不同点速度不同的情况。转动惯量是描述物体转动状态的物理量,对于质点和非质点物体,可以通过积分求和得到。文章还给出了匀质细杆的转动惯量计算示例,并鼓励读者尝试计算其他常见物体的转动惯量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

人们为什么要提出转动惯量这个概念呢?

看下图,这个是一个单摆,下面挂着一个小球。

假设单摆质量为0;小球直径无穷小,是一个质点,这个时候我们如何求这个小球的动能呢?

很显然的,我们想到用

这里

这是因为我们把小球看作了质点,所以小球的速度只有一个,就是上面的公式。

当小球开始变大之后呢?小球不能看作一个质点了,因为小球本身每个点的速度都是不一样的。

看下面这个图片,我们在小球上面取两个点。然后可以看出来上面这个点的速度是,下面那个点的速度是。这个时候速度大小不一样了,那么如何求他的动能呢?

我们考虑到,既然小球是绕着定轴转动的,那么可不可以找到一个计算转动动能的公式呢?

我们把动能公式稍微变形,既然是转动,那么就是对应于角速度了,跟动能的公式进行对比。

不难得出,只要我们提出一个概念,让第一个小球的这个概念为

,那么我们就可以通过转动计算出来小球的动能。

这个概念就是转动惯量 

这是一个质点绕着距其长度为的转动中心转动时的转动惯量。

那么如果不是质点呢?比如一个大圆盘子呢?

那么我们只需要把这个大圆盘子分解为无数个小的质点,然后分别计算其转动惯量再求和即可。

如下式:

 有了上面对平动动能公式的变形,我们现在也能够理解这个公式是怎么来的了。

那么我们是不是可以将大部分的转动惯量计算出来了呢?很显然是的,接下来计算一下常见物体的转动惯量。

常见转动惯量计算

1.匀质细杆

我们看下面这个匀质细杆,绕着一个端点转动。 

假设他的线密度为,那么

因此: 

别的的话,以后有空再算。 

 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen953

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值