引言
人们为什么要提出转动惯量这个概念呢?
看下图,这个是一个单摆,下面挂着一个小球。
假设单摆质量为0;小球直径无穷小,是一个质点,这个时候我们如何求这个小球的动能呢?
很显然的,我们想到用
这里
这是因为我们把小球看作了质点,所以小球的速度只有一个,就是上面的公式。
当小球开始变大之后呢?小球不能看作一个质点了,因为小球本身每个点的速度都是不一样的。
看下面这个图片,我们在小球上面取两个点。然后可以看出来上面这个点的速度是,下面那个点的速度是
。这个时候速度大小不一样了,那么如何求他的动能呢?
我们考虑到,既然小球是绕着定轴转动的,那么可不可以找到一个计算转动动能的公式呢?
我们把动能公式稍微变形,既然是转动,那么就是对应于角速度了,跟动能的公式进行对比。
不难得出,只要我们提出一个概念,让第一个小球的这个概念为
,那么我们就可以通过转动计算出来小球的动能。
这个概念就是转动惯量
这是一个质点绕着距其长度为的转动中心转动时的转动惯量。
那么如果不是质点呢?比如一个大圆盘子呢?
那么我们只需要把这个大圆盘子分解为无数个小的质点,然后分别计算其转动惯量再求和即可。
如下式:
有了上面对平动动能公式的变形,我们现在也能够理解这个公式是怎么来的了。
那么我们是不是可以将大部分的转动惯量计算出来了呢?很显然是的,接下来计算一下常见物体的转动惯量。
常见转动惯量计算
1.匀质细杆
我们看下面这个匀质细杆,绕着一个端点转动。
假设他的线密度为,那么
因此:
别的的话,以后有空再算。