开篇导言
场景痛点
"某汽车零部件厂每月因人工质检遗漏损失300万,直到部署了基于Python的视觉检测系统..."
-
传统质检效率低下、成本高昂
-
深度学习技术带来的产业变革
-
Python在视觉识别领域的独特优势
一、技术架构解析
1.1 系统组成模块
图表
代码
下载
检测结果
图像采集
预处理
深度学习模型
业务逻辑
可视化输出
1.2 技术选型对比
模块 | 可选方案 | 本次选择 | 优势 |
---|---|---|---|
图像处理 | OpenCV/PIL/Scikit-image | OpenCV 4.8 | 实时性能优异,工业级稳定性 |
深度学习框架 | PyTorch/TensorFlow | TensorFlow | 动态图易调试,生态完善 |
部署工具 | Flask/FastAPI/Gradio | Flask | 快速构建演示界面 |
核心代码
from flask import Flask, request, render_template, redire