人工势场法路径规划算法

人工势场法(Artificial Potential Field Method)是一种常用的路径规划技术,特别适用于移动机器人在复杂环境中的导航。它利用一种模拟物理力场的方式来指导机器人移动,从而避开障碍物并到达目标点。下面是人工势场法的基本概念和实现步骤。

基本概念

  1. 吸引势场(Attractive Potential Field)

    • 吸引势场指的是引导机器人朝向目标的力场。这个力场的大小和方向通常与目标点与机器人之间的距离有关。
    • 吸引势场的公式通常是 𝑈𝑎𝑡𝑡(𝑥)=12𝑘𝑎𝑡𝑡∥𝑥−𝑥𝑔𝑜𝑎𝑙∥2Uatt​(x)=21​katt​∥x−xgoal​∥2,其中 𝑘𝑎𝑡𝑡katt​ 是吸引力系数, 𝑥𝑔𝑜𝑎𝑙xgoal​ 是目标位置。
  2. 排斥势场(Repulsive Potential Field)

    • 排斥势场用来避开障碍物。它产生的力会推动机器人远离障碍物。
    • 排斥势场的公式通常是 𝑈𝑟𝑒𝑝(𝑥)=12𝑘𝑟𝑒𝑝(1∥𝑥−𝑥𝑜𝑏𝑠∥−1𝑑0)2Urep​(x)=21​krep​(∥x−xobs​∥1​−d0​1​)2 ,其中 𝑘𝑟𝑒𝑝krep​ 是排斥力系数, 𝑑0d0​ 是排斥势场的影响范围, 𝑥𝑜𝑏𝑠xobs​ 是障碍物的位置。
  3. 总势场

    • 总势场是吸引势场和排斥势场的加权和,机器人在每个时间步骤会根据总势场的梯度来决定移动方向。

实现步骤

  1. 定义势场函数

    • 计算吸引势场和排斥势场的函数。
  2. 计算力

    • 从当前机器人位置计算吸引力和排斥力。
  3. 更新位置

    • 根据计算出的总力更新机器人的位置。
  4. 循环迭代

    • 持续执行更新过程直到机器人到达目标点或者满足其他停止条件。

示例代码

下面是一个使用 C++ 实现的人工势场法路径规划的简化示例代码:

#include <iostream>
#include <vector>
#include <cmath>

struct Vector2 {
    float x, y;

    Vector2() : x(0), y(0) {}
    Vector2(float x, float y) : x(x), y(y) {}

    Vector2 operator-(const Vector
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我写代码菜如坤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值