人工智能
文章平均质量分 65
放羊郎
个人网站 https://www.zhenxiangsimple.com
展开
-
常用无线通信协议对比分析
蓝牙、zigbee、Lora、4G、wifi分析对比原创 2024-04-10 09:39:07 · 1444 阅读 · 0 评论 -
tensorflow开发之 基于CNN的手写数字识别(含源码)
基于Mnist字体样本,使用CNN流程,实现对手写数字的识别训练原创 2021-11-07 22:08:55 · 9213 阅读 · 1 评论 -
tensorflow开发之 基于softmax的手写数字识别(含源码)
基于softmax的全链接层模型,使用mnist训练集进行手写数字的识别原创 2021-11-06 00:04:56 · 4764 阅读 · 0 评论 -
tensorflow开发 之数字识别统计
查看mnist数据的统计状态原创 2021-11-04 22:40:14 · 475 阅读 · 0 评论 -
tensorflow开发 之数字识别文件读取
基于tensorflow2.0进行mnist文件读取解析原创 2021-11-04 20:28:16 · 708 阅读 · 0 评论 -
数字经济发展新格局 -- 何伟
前两天到中国人民大学,听何伟老师讲了一堂关于数字经济发展的课,何老师长期从事信息化、数字经济、信息通信等领域的战略、规划与政策研究,是中国信息通信研究院数字经济与法律监管领域负责人。。。原创 2021-04-21 23:32:04 · 311 阅读 · 0 评论 -
linux系统jupyterlab安装过程的问题处理
基于deepin系统,安装jupyterlab过程遇到的问题及解决办法...原创 2020-03-07 17:55:36 · 4425 阅读 · 0 评论 -
人工智能视觉 - 实验教学方案
以树莓派为主要载体,通过对单目和双目摄像头进行图像采集,并执行图像处理算法,通过57个实验来进行学习...原创 2020-01-09 11:19:10 · 865 阅读 · 0 评论 -
ROS自主导航 - 实验教学方案
本实验箱以大载重的全向麦轮车为载体,基于ROS系统作为开发平台,使用双驱和四驱两种不同的结构作为机器人本体,最终通过地面二维码实现导航机器人的精确方向和距离控制...原创 2020-01-07 11:50:50 · 2342 阅读 · 6 评论 -
机器学习基础 之 规则学习
规则学习就是指通过样本学习一个明确的规则,用以对待分类样本进行分类,目标是产生一个能覆盖尽可能多的样本的规则集。规则常分为命题规则和一阶规则,命题规则指使用具体原子命题和逻辑关系组合成的简单陈述句,一阶规则是由可以描述属性的原子公式,从描述来看命题规则属于一阶规则的特殊情况原创 2019-04-18 15:08:14 · 4970 阅读 · 1 评论 -
机器学习基础 之 强化学习
强化学习的原理,就是通过结果的反馈来对有效规则进行强化,并弱化无效或者较差的规则的一种学习原理。跟常规的监督学习不同之处在于,在学习器的训练前没有标记样本的结果,而需要通过尝试来得到各行为的结果,进而来对训练本身进行反馈原创 2019-04-22 14:02:28 · 2008 阅读 · 0 评论 -
tensorflow开发 之 hello world
文章目录进入虚拟环境进入python开发环境编写第一个程序输出说明点击查看Tensorflow系列文章进入虚拟环境cd demo/venv.\Scripts\activate进入python开发环境python编写第一个程序import tensorflow as tf;tmpString = tf.constant("hello world")sess = tf.Se...原创 2019-01-24 09:47:08 · 511 阅读 · 1 评论 -
tensorflow开发 之 搭建开发环境(Windows、Ubuntu)
Windows系统(win7及以上)安装Python & pip 这个到处都有说,不再多说virtualenv安装虚拟环境:pip3 install -U pip virtualenv创建虚拟环境:virtualenv --system-site-packages -p python3 ./venv验证虚拟环境:cd venv/Scripts //进入目录a...原创 2019-01-23 23:49:09 · 720 阅读 · 0 评论 -
mnist文件解析(C语言)
文章目录使用说明环境要求配置程序说明解码图像解码图像对应数值生成图像文件合并成一个图像文件点击查看Tensorflow系列文章 mnist本身是将数字手写体图像,归一化后信息合成的文件,分训练集和测试集两部分,每部分包含图片和标签两个文件,本文使用C++写的Demo将文件解码,并通过opencv将数据存储为常规的图像文件。源码下载地址:https://github.com/zacSuo/m...原创 2019-01-24 11:47:36 · 709 阅读 · 0 评论 -
tensorflow开发 之 基础概念及常用数据类型介绍
文章中对tensor常规的数据类型和操作,进行语法介绍和使用示例,包括张量Tensor、变量Variable、数据节点Placeholder及计算节点Operation原创 2019-01-30 18:59:01 · 442 阅读 · 0 评论 -
机器学习基本 之 名词解释
数据集(data set):一组用于机器学习的数据的集合示例(instance):数据集中的一条数据记录特征向量(feature vector):一个示例在数学上的表示训练数据(trainning data):使用机器学习用来建立模型的数据样本空间(sample space):训练数据中用于作为条件的数据,即预测时的输入值标记空间(label space):训练数据中用于作为结果的数据...原创 2019-03-19 21:24:33 · 1551 阅读 · 0 评论 -
读书感受 之 《机器学习》
周志华的这本清华大学出版社出版的机器学习,据说一度在各大电商平台计算机类书籍中排行都在前三,可见现在人工智能的热度以及大家对其未来的预期之高,不论是否能坚持读完或者能否理解部分内容,只要买了书都算是一种上进心吧原创 2019-04-12 14:13:19 · 709 阅读 · 0 评论 -
机器学习基础 之 半监督学习
半监督学习是指让学习器的训练不仅仅依赖于对训练样本的标记,而是可以利用未标记的样本实现自主学习的一种方式。相对应的常规基于已标记的样本进行模型训练,然后使用训练的结果对待预测数据进行预测的方式称为主动学习原创 2019-04-12 14:12:14 · 774 阅读 · 0 评论 -
机器学习基础 之 概率图模型
概率图模型就是基于概率构建的图结构模型,使用该模型来进行数据的分类,有多种类型的方法来进行模型的求解,包括马尔科夫模型,随机场等..原创 2019-04-16 12:17:56 · 619 阅读 · 0 评论 -
机器学习基础 之 特征选择和稀疏学习
特征选择可以理解为降维,就是在样本的众多属性数据中选择部分属性或特征作为学习的数据,常见的特征选择分为过滤式、包裹式和嵌入式三类。一方面可以减轻后期学习的计算量,尽量避免维数灾难问题,另一方面,可以降低学习难度,毕竟维数减少后使用较少的维度更容易找到样本之间的关系原创 2019-04-10 08:24:54 · 653 阅读 · 0 评论 -
AI(人工智能)相关系列文章
搭建开发环境(Windows、Ubuntu)Hello World原创 2019-01-24 23:12:51 · 1406 阅读 · 0 评论 -
机器学习基础 之 降维与度量学习
k临近学习的原理是,对于给定的待测试样本,基于某种距离找出训练集中与其最靠近的k个训练样本,然后基于这k个邻居的属性来进行计算,使用k个邻居的“均值”作为待测试样本的最终分类值。当前分类方法受距离计算原理影响,可能不同的距离会得到不同的分类结果;也收到k的取值影响,可能也会由于k的范围不同得到不同的分类区间...原创 2019-04-09 20:57:52 · 511 阅读 · 0 评论 -
机器学习基础 之 聚类
聚类通常目标是将样本分为几个同的类别,而分类前的样本数据本身通常并没有对应的类别,或者说样本是在聚类后才知道了哪些样本属于一类,而被分好的类别名称是需要用户根据其特征来命名...原创 2019-04-03 13:35:47 · 470 阅读 · 0 评论 -
机器学习基础 之 集成学习
集成学习是指将多个学习器进行集成来完成学习任务,若集成中只包含同类型的学习器称为同质集成,同质集成对应的学习器称为基学习器;若集成使用的学习器不同类型称为异质集成,异质集成对应的个体学习器称为组件学习器原创 2019-04-02 13:17:28 · 541 阅读 · 0 评论 -
机器学习基础 之 贝叶斯分类器
贝叶斯分类器是一类基于贝叶斯公式的分类算法的总称,它不是指某一个具体算法,基于贝叶斯订立的这些分类算法可以统称为贝叶斯分类原创 2019-04-01 22:56:12 · 474 阅读 · 0 评论 -
机器学习基础 之 支持向量机(SVM)
支持向量机是一种,使用线性模型将测试样本一分为二的一种模型,并且两类样本的区别越大越好(间隔越远越好),通过不同方式的优化升级,使得模型具有较高的鲁棒性,并可以解决一些非线性分类问题,简单来讲模型的优化过程如下...原创 2019-03-30 11:47:02 · 768 阅读 · 0 评论 -
机器学习基础 之 神经网络
不论神经网络的模型是否真的跟生物自身的神经网络相似,也不是特别重要,可以不用太关心,能大概理解它的一个构造思想即可。通常大家不会具体到要去通过代码实现神经网络模型,所以不必太在意其数学公式和具体计算,只需要关心其大概原理,本文就说说相关的一些概念...原创 2019-03-29 19:23:37 · 361 阅读 · 0 评论 -
机器学习基础 之 决策树
决策树,是使用树形结构进行决策或者判定的一种方法。本文说一下,机器学习中决策树里的一些常用计算规则或数学概念。分类方式 决策树的分类是基于样品对象的某一个属性值为标准的,如果样品有多个维度的属性,则需要确定以哪些属性作为优先分类的条件,以及如何排序分类的条件,即确定一个分类属性后如何确定后面的属性,甚至如果有的属性值不存在时该如何处理等等。信息熵:Ent(D)=−∑k=1∣y∣pkl...原创 2019-03-28 18:59:14 · 411 阅读 · 0 评论 -
机器学习基础 之 计算学习理论
本章节以概念介绍为主,计算学习理论为了研究通过“计算”来进行“学习”的理论,即研究机器学习的理论基础,目标是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法的设计。原创 2019-04-11 13:22:11 · 949 阅读 · 0 评论