3种方法: 圆圈中最后剩下的数字

该博客介绍了如何解决NO. 1579问题,即在0到n的数字圆圈中,按m的步长删除数字,最后剩下的数字。提供了暴力法、递归和循环三种解法,每种方法详细阐述了思路和时间、空间复杂度,并附带了示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目

NO. 1579

0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。

例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。

示例 1:

输入: n = 5, m = 3
输出: 3

示例 2:

输入: n = 10, m = 17
输出: 2

限制:

1 <= n <= 10^5
1 <= m <= 10^6


解法一(暴力法)

思路:使用数组申请一块内存(也可以使用链表),按照要求循环执行n-1次移除操作,最后剩下的元素即为所求

  1. 申请一块连续内存,存放0到n的数值
  2. 位置索引按照题目要求计算,数组中索引从0开始,需要根据移动个数减一
  3. 最后一个数值即为所求
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
# author: suoxd123@126.com
class Solution:
    def lastRemaining(self, n: int, m: int) -> int:
        cnt, rmIdx = n, m
        circle = [k for k in range(0,cnt)]
        for i in range(1,n):
            rmIdx = rmIdx%cnt - 1 #索引从0开始,计数从1开始
            tmpVal = circle.pop(rmIdx)
            cnt -= 1
            rmIdx = rmIdx + m if rmIdx >= 0 else m #索引为-1时,直接赋值m
        return circle.pop()

解法二(递归)

思路:约瑟夫环的公式为: f ( n , m ) = [ f ( n − 1 , m ) + m ] % n f(n,m) = [f(n-1,m)+m]\%n f(n,m)=[f(n1,m)+m]%n,具体原理,我也没搞懂。
思路:约瑟夫环的递推公式为:f(n,m) = [f(n-1,m) + m] % n,具体原理,我也没搞懂,如果有明白的朋友,希望不吝赐教。

大概意思是,n-1个数值的最后剩余数值向右移动m位,即得到,n个数时最后剩余的数值(对n求余是,在超出数值时继续重0开始编号,为了形成环,这个我知道),具体原因,我也没理解。

看了一些解释,过程是,每次删除一个数后,从被删位置的下一个位置,从零开始重新循环编号。

  1. 当只有一个数据时,返回唯一的可能情况:0
  2. 递归得到上一次删除最后剩余的值 x
  3. 上一次的结果加入后,从x作为计数开始
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
# author: suoxd123@126.com
class Solution:
    def lastRemaining(self, n: int, m: int) -> int:
        if n == 1:
            return 0
        x = self.lastRemaining(n-1,m)
        return (m + x) % n

解法三(循环)

思路:将递归的思路,使用循环实现

  • 时间复杂度:O(n)
  • 空间复杂度:O(1),另外也减少了栈空间的申请
# author: suoxd123@126.com
class Solution:
    def lastRemaining(self, n: int, m: int) -> int:
        last = 0
        for i in range(1,n):
            last = (last + m) % (i + 1)
        return last

好的,针对你的问题,我可以给出一个使用动态规划求解圆圈最后剩下数字的思路和 Golang 代码实现。 思路: 我们可以使用一个长度为 n 的数组来表示圆圈中所有数字的状态,即数组中第 i 个位置的数表示圆圈中第 i 个数字当前的状态,0 表示该数字已经被删除,1 表示该数字仍然存在。 接着,我们可以使用一个指针来表示当前删除数字的位置,初始值为 0。每次从当前位置开始,依次找到下一个未被删除的数字,并将指针指向该数字的位置。然后将该数字删除(即将其对应的数组元素置为 0),并将指针向后移动 m 个位置,即跳过 m-1 个被删除的数字。重复上述步骤,直到剩下最后一个数字最后一个数字即为最后一个被删除的数字的下一个数字,也就是指针当前所指向的数字。 Golang 代码实现: ```go func LastRemaining(n int, m int) int { nums := make([]int, n) for i := 0; i < n; i++ { nums[i] = 1 } ptr := 0 for count := n; count > 1; count-- { step := (m - 1) % count for i := 0; i < step; i++ { for nums[ptr] == 0 { ptr = (ptr + 1) % n } ptr = (ptr + 1) % n } for nums[ptr] == 0 { ptr = (ptr + 1) % n } nums[ptr] = 0 } for i := 0; i < n; i++ { if nums[i] == 1 { return i } } return -1 } ``` 在上面的代码中,我们首先创建一个长度为 n 的数组 nums,并将其中所有元素初始化为 1,表示圆圈中所有数字都存在。 接着,我们使用一个指针 ptr 来表示当前删除数字的位置,初始值为 0。 在每次循环中,我们先计算出 m 对当前剩余数字个数 count 取模的结果 step,表示指针需要向后移动的距离。 然后,我们依次将指针向后移动 step 个位置,跳过被删除的数字最后,我们将指针指向当前第 m 个未被删除的数字,并将其删除。 重复上述步骤,直到圆圈中只剩下一个数字。最终,我们返回最后一个未被删除的数字的下标。 希望这个回答能够帮到你,如果还有什么疑问,请随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

具身小站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值