产品型号 | 显存容量 | 显存带宽 | 价格(人民币) | 适用场景 | 模型性能对比 |
---|---|---|---|---|---|
数据中心与AI计算 | |||||
H100 (SXM) | 80GB HBM3 | 3 TB/s | 未公开(企业级) | 超大规模AI训练(千亿参数)、HPC | 比A100性能提升3-6倍(BERT训练),FP8精度加速显著 |
H800 (PCIe) | 80GB HBM2e | 600 GB/s | 未公开(受管制) | 中等规模AI训练/推理,支持分批处理 | 带宽为H100的1/5,训练吞吐量降低约40% |
A100 (PCIe) | 40GB/80GB HBM2 | 2 TB/s | 未公开(数据中心级) | 大规模模型训练(百亿参数)、数据中心AI计算 | 比V100性能提升6倍(BERT训练),支持NVLink互联 |
L40S | 48GB GDDR6 | 912 GB/s | 未公开 | 图形渲染、AI推理、虚拟化工作站 | 推理性能接近A100,显存容量更大,但带宽略低 |
A40 | 48GB GDDR6 | 696 GB/s | 未公开 | 专业图形渲染、虚拟化、轻量级训练 | 显存容量与L40S相同,但带宽更低,适合非实时推理 |
消费级显卡 | |||||
RTX 4090 | 24GB GDDR6X | 1 TB/s | 约12999元起 | 中型模型训练(10亿参数)、4K游戏、AI绘图 | 比RTX 3090性能提升约50%,显存带宽翻倍 |
RTX 4080 SUPER | 16GB GDDR6X | 736 GB/s | 约9499元起 | 高画质游戏、中型AI推理 | 比RTX 4070 Ti性能提升20%-30%,显存容量减半但带宽更高 |
RTX 4070 Ti SUPER | 16GB GDDR6X | 736 GB/s | 约7499元起 | 1440P游戏、轻量级训练(百万级参数) | 比RTX 3080性能提升约40%,显存容量翻倍 |
RTX 4070 SUPER | 12GB GDDR6X | 504 GB/s | 约4799元起 | 1080P-1440P游戏、小型AI推理 | 比RTX 3070性能提升约30%,显存容量减少但带宽优化 |
RTX 4060 Ti 16GB | 16GB GDDR6 | 288 GB/s | 约3899元起 | 轻量级推理、入门级训练、AI绘图 | 比RTX 3060性能提升约25%,显存容量翻倍但带宽较低 |
RTX 4060 | 8GB GDDR6 | 224 GB/s | 约2499元起 | 基础AI推理、1080P游戏 | 比RTX 3050性能提升约35%,显存容量相同但能效比更高 |
专业图形与工作站 | |||||
RTX 6000 Ada | 48GB GDDR6 | 960 GB/s | 约55000元起 | 3D渲染、影视特效、AI加速设计 | 比上一代RTX A6000性能提升约50%,显存带宽更高 |
RTX A6000 | 48GB GDDR6 | 768 GB/s | 约40000元起 | 专业图形渲染、复杂模拟 | 显存容量与RTX 6000 Ada相同,但带宽和架构落后一代 |
嵌入式与边缘计算 | |||||
Jetson AGX Orin | 32GB LPDDR5 | 204.8 GB/s | 约8000元起 | 机器人、工业自动化、边缘AI | 比Jetson Xavier NX性能提升约6倍,支持多传感器融合 |
Jetson Xavier NX | 8GB LPDDR4x | 51.2 GB/s | 约4000元起 | 小型嵌入式设备、低功耗AI | 功耗仅10W,适合边缘端轻量级推理 |
关键说明
-
性能对比逻辑:
- 数据中心GPU(如H100/A100)对比聚焦大规模训练吞吐量,消费级显卡(如RTX 4090)对比侧重单卡性价比与能效比 。
- 嵌入式产品(如Jetson系列)对比关注功耗与边缘计算适配性 。
-
架构差异:
- H100采用Hopper架构,支持FP8精度,比Ampere架构的A100在AI任务中效率更高 。
- RTX 40系列基于Ada Lovelace架构,相比上一代能耗比提升显著 。
-
显存与带宽权衡:
- H800因带宽限制(600 GB/s),训练性能仅为H100的60%-70% 。
- RTX 4060 Ti 16GB显存容量翻倍,但带宽低于同代高端显卡,适合分批次处理小模型 。