不同形式混沌系统的曲线




function chaoticDemoThree
%混沌曲线演示
%混沌系统具有初始值敏感性,初始值的微小变化最终会导致混沌系统严重偏离。
%此程序用于演示混沌系统的3个函数形式
% x(i+1)=4*x(i)*(1-x(i))     值的区间在[0,1]
% x(i+1)=1-2*x(i)*x(i)       值的区间在[-1,1]
%x(i+1)=cos(k*arccos(x(i))   k阶chebyshev,k为阶数    值的区间在[-1,1]

%程序设计:李立宗
%2012年3月3日
% http://blog.csdn.net/superdont
% lilizong【at】Gmail
clc;
clear all;

% 设置长度
len=100;
%设置初始值
format long;
key1=0.7;
key2=0.7;
key3=0.7;
key4=0.7;
%第1条曲线

s1=zeros(1,len);
s1(1)=key1;
for i=2:len
    s1(i)=4*s1(i-1)*(1-s1(i-1));
end
%第2条曲线
s2=zeros(1,len);
s2(1)=key2;
for i=2:len
  s2(i)=1-2*s2(i-1)*s2(i-1);
end
%第3条曲线   3阶
s3=zeros(1,len);
s3(1)=key3;
for i=2:len
  s3(i)=cos(3*coth(s3(i-1)));
end
%第3条曲线  8阶
s4=zeros(1,len);
s4(1)=key4;
for i=2:len
  s4(i)=cos(8*coth(s4(i-1)));
end
subplot(2,2,1),plot(s1,'b-');
title('x(i+1)=4*x(i)*(1-x(i))混沌系统');
subplot(2,2,2),plot(s2,'r-');
title('x(i+1)=1-2*x(i)*x(i)混沌系统');
subplot(2,2,3),plot(s3,'g-');
title('3阶chebyshev函数混沌系统');
subplot(2,2,4),plot(s4,'g-');
title('8阶chebyshev函数混沌系统');





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superdont

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值