MATLAB|基于PSO-BP神经网络的风电功率预测

本文介绍了PSO-BP算法,一种结合粒子群优化和BP神经网络的风电功率预测方法。算法通过PSO优化BP神经网络参数,提高预测精度。文章详细描述了算法流程,并以实际风电场数据为例进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

主要内容   

  模型研究   

一、风电功率预测方法概览

二、PSO-BP算法流程

  结果一览   

下载链接 


主要内容   

该模型将粒子群算法与BP神经网络结合用于BP神经网络的训练,即优化BP网络中的连接权值和各项阈值,然后利用神经网络分布式并行处理优势、自适应学习能力以及较好的鲁棒性能对风电功率数据进行预测。该算法优点是通过 PSO 算法进行 BP 算法的权值和阈值计算,得到一个比较理想的初始值,该初始值能够保证 BP 在预测中迅速达到全局最优解,从而改进了传统 BP 神经网络的不足​。模型利用某风电场过去一年的实测数据作为训练样本,基于MATLAB编写PSO-BP算法进行短期风电功率预测。

  模型研究   

一、风电功率预测方法概览

从预测方式来看,主要有物理方法和统计方法,具体特点如下​:

  1. 物理方法:基于气象学和风力发电机组的工作原理建立数学模型,考虑风速、风向、机组特性等因素来预测功率输出。常见的物理模型包括CFD模拟、功率曲线法、风功率密度法等。
  2. 统计方法:以对历史统计数据和NWP数据的分析研究为基础,建立NWP数据与风电场输出功率之间的映射关系。该方法直接利用NWP数据对风电场输出功率进行预测。统计方法同时适用于超短期、短期和中长期预测。
  3. 人工智能方法:属于更为先进的统计方法,利用机器学习算法,如人工神经网络、支持向量机、随机森林等,通过对大量历史数据的学习和训练,建立预测模型。这种方法可以更好地捕捉复杂的非线性关系和时空变化。​更加详细的分类方式见下表。

二、PSO-BP算法流程

  结果一览   

下载链接 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值