1.极限——例子_4

目录

极限例子1

极限例子2

极限例子3


极限例子1

我们再多点极限的例题。我们来做另一道题,当x趋近于3时的极限是什么?

\lim_{x \to 3} \frac{x^2-6x+9}{x^2-9}

 不论什么时候,看到任何求极限的题,我要做的第一件事就是把数带入看看。

如果得到有意义的结果那样就算做完了。

但把3代入分子后,得到了3的平方,也就是9,再减18加9,结果是0。分母是3的平方减9,也是0。

我们并不喜欢得到\frac{0}{0}。那么有没有方法可以把式子简化,得到一个新的表达式,从而可以在x=3处计算出有意义的值呢?

无论何时,我看到这儿的这些表达式,检查一下就发现,它们看起来很容易被分解。我可以分解它们。

因此或许分子分母有相同的因式,这样就可以简化了。它其实和这个看起来像(x-3)^{2}

\lim_{x \to 3} \frac{x^2-6x+9}{x^2-9}=\lim_{x \to 3}\frac{(x-3)(x-3)}{(x+3)(x-3)}

 所以当x趋近于3时,这个表达式的极限是一样的。当然,我们不可能改变这个函数或者表达式,在x=3时无定义的事实,

不过如果我们能简化它,我们就可以进行计算。

假设x是3以外的任何数,可以消掉两项。因为它们都不会为0。只有当x=3时才是0。

所以分子分母上消掉两项,变成:

\lim_{x \to 3}\frac{(x-3)(x-3)}{(x+3)(x-3)} = \lim_{x \to 3}\frac{(x-3)}{(x+3)}

那么我们可以说,这里其实并没有那么严谨,但这是为了更好地教会你们。

\lim_{x \to 3}\frac{(x-3)(x-3)}{(x+3)(x-3)}   和   \lim_{x \to 3}\frac{(x-3)}{(x+3)} 是一样的。为什么呢??

现在我们试着把x代入,看看会得到什么。在分子上,是3-3,就是0.但分母上得到6。现在我们得到了\frac{0}{6} 这个实数,结果为0。

这就有趣了。第一次做的时候,\lim_{x \to 3}\tfrac{x^2-6x+9}{x^2-9} = \tfrac{0}{0} 。但现在通过简化却得到了0。

但是,记住表达式在x=3时无定义,仍然是很重要的。如果画出曲线,随着x越来越接近3,表达式的值为0。

好吧,我知道你们在想什么!因为简化之前的表达式得到结果是\frac{0}{0}。是不是计算表达式的值时,每次得到\frac{0}{0},都会以0结束?

我们来考虑一下,继续看下一个例子!

\lim_{x \to 1}\frac{x^2+x-2}{x-1}=\frac{0}{0}

如果我们代入计算,当x=1时, 会的到结果为\frac{0}{0}。我们再一次得到了。

接下来我们必须去简化式子,分解一下式子:

\lim_{x \to 1}\frac{x^2+x-2}{x-1}=\lim_{x \to 1}\frac{(x-1)(x+2)}{x-1}

我想当你们见过很多求极限的问题后,你们会发现 \lim_{x \to 1}\frac{x^2+x-2}{x-1}即使分子这部分,如果分子难以分解,

你可以试着这样去考虑:分母上的使表达式无定义的那部分,很可能是分子的因子。

如果我们再次假设x不等于1,那么这个表达式和这个表达式都不会为0。所以有两项可以消去,我们得到:

\lim_{x \to 1}\frac{x^2+x-2}{x-1}=\lim_{x \to 1}\frac{(x-1)(x+2)}{x-1} = \lim_{x \to 1}x+2

现在就简单了,当x趋向于1时,x+2的极限是多少?只需把1代入,得到3。

\lim_{x \to 1}x+2 = 3

这很有趣。当我们试着计算表达式在x=1时的值,得到了\frac{0}{0}

在之前的例子,我们看到了简化后的结果为0。而这个例子结果为3。我很鼓励你们画出我们做的这些函数,就可以发现是对的。

当x趋近于1时,函数的值很接近我们求得的极限。


极限例子2

继续我们下一道有趣的例子:

\lim_{x \to \infty }\frac{x^2+3}{x^3}

当x趋近与无穷大时,x的平方+3除以x的立方的结果多少?

我们思考这些趋于无穷的问题的方法,是考虑当x值非常大时,情况是怎么样的?

有一种有点作弊嫌疑的方法是,如果有一个计算器,即使没有计算器,也可以代入很大的数,

看看x是100万时以及更大时,情况是怎么样的?

我想你们明白了。你们会看到,如果存在极限,你们会看出它是多少。

但我的思考的方法是,在分子上增长最快的项是x^2,这是这里增长最快的项。

在分母上,增长最快的项是什么呢?分母上是x^3增长最快。

那么x^3和x^2哪个增长最快呢?是的,x^3比x^2的增长速度要快很多。所以当x越来越大时,分母要比分子增长快很多。

因此你可以想象,如果分母比分子增长快很多,随着数字越来越大会得到一个越来越小的数,对吧?

会逐渐趋近于0。所以随着x趋向于无穷,表达式趋近于0.

\lim_{x \to \infty }\frac{x^2+3}{x^3} = 0

我知道这有点不严谨,但这其实正是我们思考的方式,另一种做法是将分子分母同时除以一个数,

实际上可以对这个有理分式进行相除,你们会得到一个类似于\frac{1}{x} 加上什么什么的式子,那样你们就会发现:

当x趋向于无穷时,1/x也是0。


极限例子3

我们再来一个例子:

\lim_{x \to \infty }\frac{3x^2+x}{4x^2-5}

这些题看起来有迷惑性,但实际上非常简单,你们只需考虑,当x很大时会怎么样。

当x很大时,这些小项比大项增长得慢很多的项,可以不用管它们,因为x会很大。

在这个例子中,这些小项不用管,3x^24x^2这两个x项的增长速度相同,它们总会以\frac{3}{4}的比率增长,所以这个极限很简单。

\lim_{x \to \infty }\frac{3x^2+x}{4x^2-5} = \frac{3}{4}

所以你们要做的仅仅是找出分子增长最快的项和分母增长最快的项,然后计算出极限,如果两者相同可以消去。

你们看到了,这里的极限是 \frac{3}{4}。这是一种很不精确的做法,但是会得到正确的答案。


——请不断重复练习、练习、练习、再练习。。。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值