1.极限——例子_2

熟悉极限的概念,这非常重要!是有所有微积分学的基础,但尽管它如此重要,实际却是一个很简单的概念!

我写一个函数,其实是定义一个函数,一个简单的函数。我们定义函数f(x)。

假定f(x)=\tfrac{x-1}{x-1},你们可能会说:分子和分母是一样的!我不能把这个函数简写成f(x)=1吗?

我会说:你们是对的。如果我把一个数和它自身相除,结果是1。

它们的区别是:当x=1时,这个函数无定义的。你们可以这样简化函数,但要加上约束,当x\neq 1时,f(x)=1。如下形式:

f(x)= \frac{x-1}{x-1}\Rightarrow f(x)=1,x\neq 1

 现在二者等同了。在x不为1的时候,结果都是1。当x=1时,无定义。

让我们来画一下这个函数:

这就是函数的曲线,再一次强调,如果有人问你f(1)是多少,你应该说,这是函数的定义式,在x=1处时无定义。

当x接近1时,函数值是多少?这里开始接触极限的概念了。

随着x越来越接近1时,函数值是多少?我们来看图:

在左手边,不论如何接近1,只要没到达1。同样右手边,也是相同的。

你们可以认为,同时随着做更多的例题,你们对这个概念会越来越熟悉。

lim是limit的缩写。当x接近1时,极限f(x)等于1,因为x可以无限接近于1。

\lim_{x \to 1}f(x)=1


我们再来看另外一个例子:

假设函数g(x),当x不等于2时,它为x平方,那么当x=2时,函数值等于1。

g(x)=\begin{cases} & x^{2},\text{} x\neq 2 \\ & 1 ,\text{} x= 2 \end{cases}

这又是个有趣的函数。你们发现它并不完成连续,有一个断点,我来画一下这个函数:

g(x)=x^{2}的曲线上,当x=2时,函数为1。

这是个奇怪的函数,但你就是可以这样定义它,你想怎么定义一个函数都可以。

注意:除了在x=2这点有间断,这个函数和g(x)=x^{​{2}}是一样的。

因为当x=2时,函数值不满足g(x)=x^{2},而是等于1。所以在2这点,函数值下降到1。接着以x^{2}的形式上升。

那么就有些问题了:

如果我想求函数在x=2这点的值,,那么根据定义我们可以得出g(2)=1

我再问点有趣的问题:

g(x)当x接近2时的极限是多少?

\lim_{x \to 2}g(x)

它表示:当x接近与2时,g(x)会接近多少?

如果到了1.9、1.999,接下来1.999999,g(x)的值会接近于多少呢?

如果从正向开始逼近,比如:2.1,g(2.1)是多少?g(2.01)呢?g(2.001)呢?

当越来越接近2时,函数值接近于几呢?你可以通过画曲线直观的看出来。

当函数x值接近2时,从曲线上看,函数值接近于4,虽然实际上不是,函数会降到1,但g(x)当x接近2的极限却是4:

\lim_{x \to 2}g(x)=4

你甚至可以用计算器来算一下。你可以从数字的角度考虑!

当x接近2时,函数值会接近几呢?试一下1.9:

当x=1.9时,根据表达式,计算1.9的平方,得到3.61。再接近2会怎么样呢?

我们再试试1.99,得到3.96。那么1.999呢?对其取平方,结果是3.996。

注意,我是越来越接近2的,如果真的很近,1.999999999999的平方是? 我们会得到什么?

我们的计算器会显示4,但实际上不会正好得到4。计算机一般会四舍五入。因为我得到数太接近4了。

我们也可以从正方向开始这样做,结果实际上是,当我们从下面逼近和从上面逼近时,函数值是越来越接近于同一个数字的。

如果计算2.1的平方,会得到4.4。向前一步:2.00001的平方, 会得到4.00040001,结果也更接近4了。

所以x越接近2,函数值越接近4。这是从数字的角度去看。

当x从两个方向接近2时函数的极限是4。


——请不断重复练习、练习、练习、再练习。。。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值