论文记录MSMDFusion 2023CVPR

1 解决的问题

之前的多模态融合方法都是concat或者attention的,这样的融合方式不能够实现体素空间的细粒度交互。

2 文章内容

主要提出

1.Multi-Depth Unprojection(MDU),实现2D pixel-->3D voxel,带depth信息的lift方法;

2.Gated Modality-Aware Convolution(GMA Conv),实现LiDAR Stream和Camera Stream的特征在voxel space进行融合;

3.Cross-Scale Connection,实现多Scale的融合(类似FPN)

2.1 Feature Extraction

LiDAR Stream先对Point Clouds体素化,采用一系列Sparse 3D Conv获得不同Scale的feature;Camera Stream使用Resnet50 和 FPN对Multi-view images分别提取特征,得到Multi-view的Multi-scale的feature map.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值