1 解决的问题
之前的多模态融合方法都是concat或者attention的,这样的融合方式不能够实现体素空间的细粒度交互。
2 文章内容
主要提出
1.Multi-Depth Unprojection(MDU),实现2D pixel-->3D voxel,带depth信息的lift方法;
2.Gated Modality-Aware Convolution(GMA Conv),实现LiDAR Stream和Camera Stream的特征在voxel space进行融合;
3.Cross-Scale Connection,实现多Scale的融合(类似FPN)
2.1 Feature Extraction
LiDAR Stream先对Point Clouds体素化,采用一系列Sparse 3D Conv获得不同Scale的feature;Camera Stream使用Resnet50 和 FPN对Multi-view images分别提取特征,得到Multi-view的Multi-scale的feature map.