论文信息
题目:MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer
MMFusion: 多模态扩散模型在食管癌淋巴结转移诊断中的应用
源码:https://github.com/wuchengyu123/MMFusion
论文创新点
-
多模态异构图的构建:作者提出了一种基于CT图像以及临床测量和放射组学数据的多模态异构图,用于淋巴结转移诊断。这种图结构旨在探索多模态特征之间的复杂关系,并减少信息冗余。
-
条件特征引导扩散(CFD)方法:作者开发了一种新的扩散模型,该模型在前向过程中向真实数据添加高斯噪声,并在逆过程中通过去噪UNet学习噪声分布,以生成最终预测。这种方法有效地消除了多模态表示的冗余。
-
多组织掩蔽关系表示学习(MMRL)策略:作者引入了一种策略,通过在训练和推理阶段应用不同的掩蔽和未掩蔽跨组织表示,来捕获多组织中潜在的预后相关信息,并建立相关性优先级。
摘要
食管癌是全球最常见的癌症类型之一,其癌症相关死亡率排名第六。准确的计算机辅助癌症进展诊断可以帮助医生有效定制个性化治疗方案。目前,基于CT的癌症诊断方法因其全面检查患者状况的能力而受到广泛关注。然而,基于多模态的方法可能会引入信息冗余,导致性能不佳。此外,多模态表示之间的有效互动需要进一步探索,缺乏对多模态特征中预后相关性的深入探索。在本项工作中,作者介绍了一种基于CT图像以及临床测量和放射组学数据的淋巴结转移诊断的多模态异构图基于条件特征引导的扩散模型。为了探索多模态特征之间的复杂关系,我们构建了一个异构图。随后,应用了条件特征引导的扩散方法来消除信息冗余。此外,我们提出了一种掩蔽关系表示学习策略,旨在揭示主要肿瘤和淋巴结图像表示的潜在预后相关性和优先级。各种实验结果验证了我们提出的方法的有效性。代码可在 获取。
关键词
食管癌 · 特征引导扩散模型 · 多模态 · 淋巴结转移
2 方法
2.1 架构概述
在本节中,概述了用于LNM诊断的多模态淋巴结转移扩散(MMFusion)模型。如图1所示,通过将相应的掩模应用于原始CT扫描来获得肿瘤(GTV-T)和淋巴结(GTV-N)的总目标体积(GTV)。随后,使用预训练的ResNet提取GTV-N , 和GTV_T 的潜在成像表示,并通过MMRL策略处理,以识别与疾病相关的信息和多组织潜在表示之间的预后相关性优先级。这些特征,以及来自血液学、临床和放射组学的数据,被整合到一个异构图中。然后,利用图注意力网络(GAT)的HGA过程识别潜在的多模态特征互动。最后,应用CFD方法消除多模态特征冗余。
2.2 多组织掩蔽关系学习(MMRL)策略
提出的MMRL策略探索并学习多组织中预后相关的关系优先级和交互信息。如图1所示,以GTV-N分支为例,方法首先对连接的GTV-N表示应用组织内多头自注意力(MSA),生成组织内表示 。随后,进行跨组织MSA。在这个阶段,通过在原始关系矩阵 上应用随机掩蔽来获得掩蔽关系矩阵 。这个过程获得了未掩蔽和掩蔽的跨组织表示,分别记为 和 。在实际应用中,掩蔽的跨组织表示 在训练阶段与 合并,而 在推理阶段与 合并。为确保特征保持的完整性,实施了对齐损失,以强制执行关系建模约束。
2.3 多模态异构图基于条件特征引导的扩散模型
异构图聚合(HGA)模块 在图论中,异构图通常表示为 ,其中顶点特征矩阵 对于顶点类型 ,任务是学习所有 的 维顶点表示 ,这些表示可以捕获 中涉及的结构和关系信息。 表示边的集合及其类型。我们的 HGA 模块专注于聚合其他模态的信息,以捕获多模态特征之间的潜在互动。因此,我们定义了一个异构图,每种多模态数据类型只有一个顶点,,使用 GAT 来识别模态间的互动。为确保考虑了不同模态之间的所有可能关系,我们使用全连接图。在每一层,节点特征 将通过其注意力邻居模态更新为 ,如下所示:
其中 表示节点 的一跳邻居, 表示注意力系数。
条件特征引导扩散(CFD)方法 为了消除特征冗余并建模准确的多模态,基于 CARD 开发了一种新的扩散模型。在前向过程中,高斯噪声被添加到由 HGA 输出的特征条件的真值 中,任意时间步 可以定义为:
其中 , 具有线性噪声调度 。 表示高斯分布, 表示 HGA 的输出特征, 是单位矩阵。在逆过程中,去噪 UNet 被应用于学习噪声分布,并在由 HGA 输出特征引导的去噪步骤中生成最终预测 ,可以定义为:
其中 表示去噪 UNet 中的参数。具体来说,推理阶段的逆过程可以形式化为:
其中 , , 和 与之前的定义相同, 表示在时间步 的 CTD 的去噪输出。通过在输出特征 的指导下进行去噪过程,可以有效地消除多模态表示的冗余。
3 实验
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。