【博士论文】理解大型语言模型:使用探针分类器和自合理化实现严格和有针对性的可解释性...

论文探讨了如何通过两种方法深化对大型语言模型(LLMs)的理解:一是通过改进探针分类器分析模型内部结构,二是研究自合理化模型生成的解释。研究揭示了现有方法的局限,并提出了新的探针设置和评估指标。尽管深入理解受限,但这些技术有望提升对LLMs高级别的理解,影响其部署和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

612dd73fc71b4319e4119732673219d2.png

来源:专知
本文为论文介绍,建议阅读5分钟
在本论文中,我展示了我们在更好理解LLMs方面的方法贡献。

dd594a2d1fe6f3335abedd07477ec6ff.png

大型语言模型(LLMs)已成为许多自然语言处理(NLP)系统的基础,这得益于它们的性能和对各种任务的易适应性。然而,关于它们的内部工作原理仍有许多未知之处。LLMs拥有数百万甚至数十亿的参数,它们的大部分训练以自监督的方式进行:它们只是学习预测序列中的下一个单词或缺失的单词。这对于捕获广泛的语言、事实和关系信息非常有效,但这意味着学习的具体内容及其在LLM中的表现方式并非易事。

在本论文中,我展示了我们在更好理解LLMs方面的方法贡献。这项工作可以分为两种方法。第一种位于可解释性领域,该领域关注于理解LLMs的内部工作原理。具体来说,我们分析并完善了一种名为探针分类器的工具,该工具检查LLMs的中间表示,重点是神经模型各层的作用。这有助于我们全面理解信息在模型中的结构方式。我介绍了我们在评估和改进探针方法方面的工作。我们开发了一个框架来阐明过去方法的局限性,表明所有常见的控制都不足。基于此,我们通过创建人为的分布变化提出了更严格的探针设置。我们开发了新的探针分类器评估指标,将焦点从层包含的总体信息转移到LLM中信息内容的差异。

第二种方法涉及可解释性,特别是自合理化模型,这些模型生成自由文本解释以及它们的预测。这是局部可理解性的一个实例:我们获得个别预测的理由。然而,在这种设置中,解释的生成与预测的生成一样不透明。因此,我们在这一领域的工作重点是更好地理解生成解释的属性。我们评估了由不同模型管道生成的解释的下游性能,并将其与人类对解释的评价进行比较。我们的结果表明,提高下游性能的属性与人类在评估解释时所欣赏的属性不同。最后,我们对LLM生成的解释进行了注释,这些解释具有人类解释通常具有的属性,并讨论了这些属性对不同用户群体的影响。

虽然对LLMs内部工作的详细理解仍然不可行,但我认为本工作中呈现的技术和分析可以帮助更好地理解LLMs、它们编码的语言知识及其决策过程。结合有关模型架构、训练数据和训练目标的知识,这些技术可以帮助我们发展对LLMs的稳健的高层理解,这可以指导关于它们部署和潜在改进的决策。

6d36a42328d09c6cb4cac5d6a529b1bb.png

0bfd3bf6a8dadd4ab7d1bc71b7478c78.png

839e061e881c4594dcc4e22b6b1d2c6a.png

3cc0d8fdc8a2bf408f2f227c672e4315.png

38b5ece793c7dae9fb3efb2671b5f96a.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值