本文是对论文《Downlink Power Control for Cell-Free Massive MIMO
With Deep Reinforcement Learning》的分析,若需下载原文请依据前方标题搜索,第一作者为北京邮电大学的罗丽瑞教授。
一、研究内容概述
在本文中,作者使用基于强化学习的Actor-Critic算法对无小区大规模多输入输出的功率分配问题进行处理,实现了相较传统凸优化算法三个数量级的速率提升,也比传统深度学习算法有着更好地性能。
二、系统目标和约束
1.系统目标
对于三个不同的问题:最大和、最大最小公平性、最大积问题拓展如下:
其中传输速率由下方公式给出:
SINR(信号与干扰加噪声比)的公式如下
2.约束条件
约束条件由两项乘积构成,这两项的定义如下
三、Actor-Critic算法设计
具体介绍见《莫烦pyhton》强化学习系列课程,本文作者介绍了Actor-Critic算法设计的基本概念,但并没有在文章中给出通信模型到Actor-Critic的映射方法。
四、算法性能评估
图2表明;在最大最小公平性问题中,虽然不如等功率控制算法,但DDPG算法可以达到与传统凸优化算法相同的效果。
图3、图4表明:在最大和和最大积功率控制问题中,DDPG算法表现出了优于等功率控制和传统DL的效果。
图5表明,DDPG算法的速度相较于传统凸优化算法(CVX)有着大约两个数量级的提升。