强化学习论文分析2-------无小区大规模MIMO的下行功率控制


本文是对论文《Downlink Power Control for Cell-Free Massive MIMO
With Deep Reinforcement Learning》的分析,若需下载原文请依据前方标题搜索,第一作者为北京邮电大学的罗丽瑞教授。

一、研究内容概述

在本文中,作者使用基于强化学习的Actor-Critic算法对无小区大规模多输入输出的功率分配问题进行处理,实现了相较传统凸优化算法三个数量级的速率提升,也比传统深度学习算法有着更好地性能。

二、系统目标和约束

1.系统目标

在这里插入图片描述
对于三个不同的问题:最大和、最大最小公平性、最大积问题拓展如下:
在这里插入图片描述
其中传输速率由下方公式给出:
在这里插入图片描述
SINR(信号与干扰加噪声比)的公式如下
在这里插入图片描述

2.约束条件

在这里插入图片描述
约束条件由两项乘积构成,这两项的定义如下
在这里插入图片描述
在这里插入图片描述

三、Actor-Critic算法设计

具体介绍见《莫烦pyhton》强化学习系列课程,本文作者介绍了Actor-Critic算法设计的基本概念,但并没有在文章中给出通信模型到Actor-Critic的映射方法。

四、算法性能评估

在这里插入图片描述
图2表明;在最大最小公平性问题中,虽然不如等功率控制算法,但DDPG算法可以达到与传统凸优化算法相同的效果。
在这里插入图片描述
在这里插入图片描述
图3、图4表明:在最大和和最大积功率控制问题中,DDPG算法表现出了优于等功率控制和传统DL的效果。
在这里插入图片描述
图5表明,DDPG算法的速度相较于传统凸优化算法(CVX)有着大约两个数量级的提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@白圭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值